Arnoldi process based on optimal estimation of the regularization parameter

Xie Kai, Li Tong
{"title":"Arnoldi process based on optimal estimation of the regularization parameter","authors":"Xie Kai, Li Tong","doi":"10.1109/IST.2009.5071661","DOIUrl":null,"url":null,"abstract":"Regularization is an effective method for obtaining satisfactory solutions to super-resolution image restoration problems. The application of regularization necessitates a choice of the regularization parameter as well as the stabilizing functional. However, the best choices are not known a priori for many problems. We present the method of generalized cross-validation (GCV) for obtaining optimal estimates of the regularization parameter from the degraded image data. Implementation of GCV requires costly computation. We use Arnoldi process to reduce the computation so that the GCV criterion can be implemented efficiently. The Arnoldi process can factor the system matrix in super-resolution image restoration into a Hessenberg matrix and orthogonal one. Experiments are presented which demonstrate the effectiveness and robustness of our method.","PeriodicalId":373922,"journal":{"name":"2009 IEEE International Workshop on Imaging Systems and Techniques","volume":"15 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Workshop on Imaging Systems and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2009.5071661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Regularization is an effective method for obtaining satisfactory solutions to super-resolution image restoration problems. The application of regularization necessitates a choice of the regularization parameter as well as the stabilizing functional. However, the best choices are not known a priori for many problems. We present the method of generalized cross-validation (GCV) for obtaining optimal estimates of the regularization parameter from the degraded image data. Implementation of GCV requires costly computation. We use Arnoldi process to reduce the computation so that the GCV criterion can be implemented efficiently. The Arnoldi process can factor the system matrix in super-resolution image restoration into a Hessenberg matrix and orthogonal one. Experiments are presented which demonstrate the effectiveness and robustness of our method.
基于最优估计正则化参数的Arnoldi过程
正则化是解决超分辨率图像恢复问题的有效方法。正则化的应用不仅需要正则化参数的选择,也需要稳定泛函的选择。然而,对于许多问题来说,最佳选择并不是先验的。提出了一种广义交叉验证(GCV)方法,用于从退化图像数据中获得正则化参数的最优估计。GCV的实现需要昂贵的计算。采用Arnoldi过程减少了计算量,使GCV准则能够有效地实现。Arnoldi过程可以将超分辨率图像恢复中的系统矩阵分解为一个Hessenberg矩阵和一个正交矩阵。实验证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信