José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, João Saraiva
{"title":"Efficient Embedding of Strategic Attribute Grammars via Memoization","authors":"José Nuno Macedo, Emanuel Rodrigues, Marcos Viera, João Saraiva","doi":"10.1145/3571786.3573019","DOIUrl":null,"url":null,"abstract":"Strategic term re-writing and attribute grammars are two powerful programming techniques widely used in language engineering. The former relies on strategies to apply term re-write rules in defining large-scale language transformations, while the latter is suitable to express context-dependent language processing algorithms. These two techniques can be expressed and combined via a powerful navigation abstraction: generic zippers. This results in a concise zipper-based embedding offering the expressiveness of both techniques. Such elegant embedding has a severe limitation since it recomputes attribute values. This paper presents a proper and efficient embedding of both techniques. First, attribute values are memoized in the zipper data structure, thus avoiding their re-computation. Moreover, strategic zipper based functions are adapted to access such memoized values. We have implemented our memoized embedding as the Ztrategic library and we benchmarked it against the state-of-the-art Strafunski and Kiama libraries. Our first results show that we are competitive against those two well established libraries.","PeriodicalId":318756,"journal":{"name":"Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation","volume":"62 22","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM SIGPLAN International Workshop on Partial Evaluation and Program Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571786.3573019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Strategic term re-writing and attribute grammars are two powerful programming techniques widely used in language engineering. The former relies on strategies to apply term re-write rules in defining large-scale language transformations, while the latter is suitable to express context-dependent language processing algorithms. These two techniques can be expressed and combined via a powerful navigation abstraction: generic zippers. This results in a concise zipper-based embedding offering the expressiveness of both techniques. Such elegant embedding has a severe limitation since it recomputes attribute values. This paper presents a proper and efficient embedding of both techniques. First, attribute values are memoized in the zipper data structure, thus avoiding their re-computation. Moreover, strategic zipper based functions are adapted to access such memoized values. We have implemented our memoized embedding as the Ztrategic library and we benchmarked it against the state-of-the-art Strafunski and Kiama libraries. Our first results show that we are competitive against those two well established libraries.