Time Series Classification Using Time Warping Invariant Echo State Networks

Pattreeya Tanisaro, G. Heidemann
{"title":"Time Series Classification Using Time Warping Invariant Echo State Networks","authors":"Pattreeya Tanisaro, G. Heidemann","doi":"10.1109/ICMLA.2016.0149","DOIUrl":null,"url":null,"abstract":"For many years, neural networks have gained gigantic interest and their popularity is likely to continue because of the success stories of deep learning. Nonetheless, their applications are mostly limited to static and not temporal patterns. In this paper, we apply time warping invariant Echo State Networks (ESNs) to time-series classification tasks using datasets from various studies in the UCR archive. We also investigate the influence of ESN architecture and spectral radius of the network in view of general characteristics of data, such as dataset type, number of classes, and amount of training data. We evaluate our results comparing it to other state-of-the-art methods, using One Nearest Neighbor (1-NN) with Euclidean Distance (ED), Dynamic Time Warping (DTW) and best warping window DTW.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"10 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

For many years, neural networks have gained gigantic interest and their popularity is likely to continue because of the success stories of deep learning. Nonetheless, their applications are mostly limited to static and not temporal patterns. In this paper, we apply time warping invariant Echo State Networks (ESNs) to time-series classification tasks using datasets from various studies in the UCR archive. We also investigate the influence of ESN architecture and spectral radius of the network in view of general characteristics of data, such as dataset type, number of classes, and amount of training data. We evaluate our results comparing it to other state-of-the-art methods, using One Nearest Neighbor (1-NN) with Euclidean Distance (ED), Dynamic Time Warping (DTW) and best warping window DTW.
基于时间翘曲不变回声状态网络的时间序列分类
多年来,神经网络获得了巨大的兴趣,由于深度学习的成功故事,它们的受欢迎程度可能会继续下去。尽管如此,它们的应用程序大多局限于静态模式,而不是临时模式。在本文中,我们使用来自UCR档案中各种研究的数据集,将时间扭曲不变回声状态网络(esn)应用于时间序列分类任务。我们还根据数据的一般特征(如数据集类型、类数和训练数据量)研究了回声状态网络架构和网络谱半径的影响。我们将其与其他最先进的方法进行比较,评估我们的结果,使用具有欧几里得距离(ED)的一个最近邻(1-NN),动态时间翘曲(DTW)和最佳翘曲窗口DTW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信