Feasibility of self organization in image compression

R. Krovi, W. E. Pracht
{"title":"Feasibility of self organization in image compression","authors":"R. Krovi, W. E. Pracht","doi":"10.1109/DMESP.1991.171740","DOIUrl":null,"url":null,"abstract":"The development of a more efficient solution to the problem of image data compression for real-time situations is addressed. It is proposed that real-time image data compression can be achieved by using a neural network model based on an unsupervised learning method called self-organization. An attempt is made to determine the feasibility of using Kohonen-type networks and to compare this with other approaches using relevant performance indicators.<<ETX>>","PeriodicalId":117336,"journal":{"name":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","volume":"39 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the IEEE/ACM International Conference on Developing and Managing Expert System Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMESP.1991.171740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The development of a more efficient solution to the problem of image data compression for real-time situations is addressed. It is proposed that real-time image data compression can be achieved by using a neural network model based on an unsupervised learning method called self-organization. An attempt is made to determine the feasibility of using Kohonen-type networks and to compare this with other approaches using relevant performance indicators.<>
自组织在图像压缩中的可行性
针对实时情况下的图像数据压缩问题,提出了一种更有效的解决方案。提出了一种基于自组织的无监督学习方法的神经网络模型可以实现实时图像数据压缩。尝试确定使用kohonen型网络的可行性,并使用相关性能指标将其与其他方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信