Tuning method of linguistic membership functions

B. Chung, Jun-Ho Oh
{"title":"Tuning method of linguistic membership functions","authors":"B. Chung, Jun-Ho Oh","doi":"10.1109/FUZZY.1994.343720","DOIUrl":null,"url":null,"abstract":"A learning method which can tune the linguistic membership functions is presented. To accomplish such a method, the fuzzy inference mechanism must be expressed by the membership functions without losing a physical sense. The fuzzy subsets are then described by only a few membership functions. When both the control input and the linguistic membership function are tuned in the fuzzy controller, the fuzzy rules after the training can be expressed by the linguistic membership functions maintaining their physical meaning.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"2 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A learning method which can tune the linguistic membership functions is presented. To accomplish such a method, the fuzzy inference mechanism must be expressed by the membership functions without losing a physical sense. The fuzzy subsets are then described by only a few membership functions. When both the control input and the linguistic membership function are tuned in the fuzzy controller, the fuzzy rules after the training can be expressed by the linguistic membership functions maintaining their physical meaning.<>
语言隶属函数的调优方法
提出了一种调整语言隶属函数的学习方法。为了实现这种方法,模糊推理机制必须在不失去物理意义的情况下用隶属函数表示。然后用几个隶属函数来描述模糊子集。在模糊控制器中同时对控制输入和语言隶属度函数进行调谐后,训练后的模糊规则可以用保持其物理意义的语言隶属度函数来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信