CNN-Based Monocular 3D Ship Detection Using Inverse Perspective

Dennis Grießer, Daniel Dold, G. Umlauf, M. Franz
{"title":"CNN-Based Monocular 3D Ship Detection Using Inverse Perspective","authors":"Dennis Grießer, Daniel Dold, G. Umlauf, M. Franz","doi":"10.1109/IEEECONF38699.2020.9389028","DOIUrl":null,"url":null,"abstract":"Three-dimensional ship localization with only one camera is a challenging task due to the loss of depth information caused by perspective projection. In this paper, we propose a method to measure distances based on the assumption that ships lie on a flat surface. This assumption allows to recover depth from a single image using the principle of inverse perspective. For the 3D ship detection task, we use a hybrid approach that combines image detection with a convolutional neural network, camera geometry and inverse perspective. Furthermore, a novel calculation of object height is introduced. Experiments show that the monocular distance computation works well in comparison to a Velodyne lidar. Due to its robustness, this could be an easy-to-use baseline method for detection tasks in navigation systems.","PeriodicalId":198531,"journal":{"name":"Global Oceans 2020: Singapore – U.S. Gulf Coast","volume":"132 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Oceans 2020: Singapore – U.S. Gulf Coast","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF38699.2020.9389028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Three-dimensional ship localization with only one camera is a challenging task due to the loss of depth information caused by perspective projection. In this paper, we propose a method to measure distances based on the assumption that ships lie on a flat surface. This assumption allows to recover depth from a single image using the principle of inverse perspective. For the 3D ship detection task, we use a hybrid approach that combines image detection with a convolutional neural network, camera geometry and inverse perspective. Furthermore, a novel calculation of object height is introduced. Experiments show that the monocular distance computation works well in comparison to a Velodyne lidar. Due to its robustness, this could be an easy-to-use baseline method for detection tasks in navigation systems.
基于cnn的反视角单目三维船舶检测
由于透视投影会造成深度信息的丢失,单摄像机船舶三维定位是一项具有挑战性的任务。在本文中,我们提出了一种基于假设船舶在平面上的距离测量方法。这个假设允许使用逆透视原理从单个图像中恢复深度。对于3D船舶检测任务,我们使用了一种混合方法,将图像检测与卷积神经网络、相机几何和逆透视相结合。此外,还介绍了一种新的物体高度计算方法。实验表明,与Velodyne激光雷达相比,单目距离计算效果良好。由于其鲁棒性,这可能是导航系统中检测任务的一种易于使用的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信