{"title":"CNN-Based Monocular 3D Ship Detection Using Inverse Perspective","authors":"Dennis Grießer, Daniel Dold, G. Umlauf, M. Franz","doi":"10.1109/IEEECONF38699.2020.9389028","DOIUrl":null,"url":null,"abstract":"Three-dimensional ship localization with only one camera is a challenging task due to the loss of depth information caused by perspective projection. In this paper, we propose a method to measure distances based on the assumption that ships lie on a flat surface. This assumption allows to recover depth from a single image using the principle of inverse perspective. For the 3D ship detection task, we use a hybrid approach that combines image detection with a convolutional neural network, camera geometry and inverse perspective. Furthermore, a novel calculation of object height is introduced. Experiments show that the monocular distance computation works well in comparison to a Velodyne lidar. Due to its robustness, this could be an easy-to-use baseline method for detection tasks in navigation systems.","PeriodicalId":198531,"journal":{"name":"Global Oceans 2020: Singapore – U.S. Gulf Coast","volume":"132 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Oceans 2020: Singapore – U.S. Gulf Coast","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF38699.2020.9389028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Three-dimensional ship localization with only one camera is a challenging task due to the loss of depth information caused by perspective projection. In this paper, we propose a method to measure distances based on the assumption that ships lie on a flat surface. This assumption allows to recover depth from a single image using the principle of inverse perspective. For the 3D ship detection task, we use a hybrid approach that combines image detection with a convolutional neural network, camera geometry and inverse perspective. Furthermore, a novel calculation of object height is introduced. Experiments show that the monocular distance computation works well in comparison to a Velodyne lidar. Due to its robustness, this could be an easy-to-use baseline method for detection tasks in navigation systems.