Improving game-tree search with evolutionary neural networks

David E. Moriarty, R. Miikkulainen
{"title":"Improving game-tree search with evolutionary neural networks","authors":"David E. Moriarty, R. Miikkulainen","doi":"10.1109/ICEC.1994.349900","DOIUrl":null,"url":null,"abstract":"Neural networks were evolved to constrain minimax search in the game of Othello. At each level of the search tree, such focus networks decide which moves are to be explored. Based on the evolved knowledge of the minimax algorithm's advantages and limitations the networks hide problem nodes from minimax. Focus networks were encoded in marker-based chromosomes and evolved against a full-width minimax opponent using the same heuristic board evaluation function. The focus network was able to guide the minimax search away from poor information, resulting in stronger play while examining far fewer nodes.<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.349900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Neural networks were evolved to constrain minimax search in the game of Othello. At each level of the search tree, such focus networks decide which moves are to be explored. Based on the evolved knowledge of the minimax algorithm's advantages and limitations the networks hide problem nodes from minimax. Focus networks were encoded in marker-based chromosomes and evolved against a full-width minimax opponent using the same heuristic board evaluation function. The focus network was able to guide the minimax search away from poor information, resulting in stronger play while examining far fewer nodes.<>
用进化神经网络改进游戏树搜索
在奥赛罗博弈中,神经网络被进化为约束极大极小搜索。在搜索树的每一层,这样的焦点网络决定要探索哪些移动。基于对极大极小算法的优点和局限性的认识,该网络对极大极小算法隐藏了问题节点。焦点网络在基于标记的染色体中编码,并使用相同的启发式棋盘评估函数对全宽度最小最大对手进行进化。焦点网络能够引导极大极小搜索远离糟糕的信息,从而在检查更少的节点时产生更强的发挥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信