Lie Symmetry Methods for Local Volatility Models

M. Craddock, M. Grasselli
{"title":"Lie Symmetry Methods for Local Volatility Models","authors":"M. Craddock, M. Grasselli","doi":"10.2139/ssrn.2836817","DOIUrl":null,"url":null,"abstract":"We investigate PDEs of the form ut = 1/2 s^2 (t, x)u_xx - g(x)u which are associated with the calculation of expectations for a large class of local volatility models. We find nontrivial symmetry groups that can be used to obtain standard integral transforms of fundamental solutions of the PDE. We detail explicit computations in the separable volatility case when s(t, x) = h(t)(a + sx + ?x^2), g = 0, corresponding to the so called Quadratic Normal Volatility Model. We also consider choices of g for which we can obtain exact fundamental solutions that are also positive and continuous probability densities.","PeriodicalId":365755,"journal":{"name":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","volume":"21 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Mathematical Methods & Programming (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2836817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We investigate PDEs of the form ut = 1/2 s^2 (t, x)u_xx - g(x)u which are associated with the calculation of expectations for a large class of local volatility models. We find nontrivial symmetry groups that can be used to obtain standard integral transforms of fundamental solutions of the PDE. We detail explicit computations in the separable volatility case when s(t, x) = h(t)(a + sx + ?x^2), g = 0, corresponding to the so called Quadratic Normal Volatility Model. We also consider choices of g for which we can obtain exact fundamental solutions that are also positive and continuous probability densities.
局部波动模型的Lie对称方法
我们研究了形式为ut = 1/2 s^2 (t, x)u_xx - g(x)u的偏微分方程,这些偏微分方程与一大类局部波动率模型的期望计算有关。我们找到了非平凡对称群,可以用来得到PDE基本解的标准积分变换。我们详细说明了当s(t, x) = h(t)(a + sx + ?x^2), g = 0时可分离波动情况下的显式计算,对应于所谓的二次正态波动模型。我们还考虑g的选择,我们可以得到精确的基本解,它也是正的和连续的概率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信