{"title":"Algae Based Bio-Plastics: Future of Green Economy","authors":"Arathi Sreenikethanam, A. Bajhaiya","doi":"10.5772/intechopen.100981","DOIUrl":null,"url":null,"abstract":"Plastic has become one of the most crucial requirements of the modern-day living. The continuous reliance on the petroleum-based, non-biodegradable plastics has resulted in increased global environmental damage and rapid depletion of fossil fuels. Bioplastic, with remarkably similar properties to petroleum-based plastics is a promising alternative to overcome these emerging challenges. Despite the fact that algae and cyanobacteria are feasible alternative source for bio-plastic, there have been limited studies on strain selection and optimization of culture conditions for the bio plastic production. Naturally, algae and cynobacteria can accumulate higher amount of metabolites under stress conditions however one of the recent study on genetic engineering of Synechocystis sp. coupled with abiotic stresses showed up to 81% of increase in PHB level in the transformed lines. This chapter provides summary of various studies done in the field of algal bio-plastics, including bioplastic properties, genetic engineering, current regulatory framework and future prospects of bioplastic. Further the applications of bioplastics in industrial sector as well as opportunities and role of bio plastic in green economy are also discussed.","PeriodicalId":314154,"journal":{"name":"Biorefineries - Vision and Development [Working Title]","volume":"92 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biorefineries - Vision and Development [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Plastic has become one of the most crucial requirements of the modern-day living. The continuous reliance on the petroleum-based, non-biodegradable plastics has resulted in increased global environmental damage and rapid depletion of fossil fuels. Bioplastic, with remarkably similar properties to petroleum-based plastics is a promising alternative to overcome these emerging challenges. Despite the fact that algae and cyanobacteria are feasible alternative source for bio-plastic, there have been limited studies on strain selection and optimization of culture conditions for the bio plastic production. Naturally, algae and cynobacteria can accumulate higher amount of metabolites under stress conditions however one of the recent study on genetic engineering of Synechocystis sp. coupled with abiotic stresses showed up to 81% of increase in PHB level in the transformed lines. This chapter provides summary of various studies done in the field of algal bio-plastics, including bioplastic properties, genetic engineering, current regulatory framework and future prospects of bioplastic. Further the applications of bioplastics in industrial sector as well as opportunities and role of bio plastic in green economy are also discussed.