Trajectory Optimization and Control Method Based on Multistage Nonlinear Model Predictive Control

Qingchun Zheng, Zhi-Xin Peng, P. Zhu, Ran Zhai
{"title":"Trajectory Optimization and Control Method Based on Multistage Nonlinear Model Predictive Control","authors":"Qingchun Zheng, Zhi-Xin Peng, P. Zhu, Ran Zhai","doi":"10.1109/AINIT59027.2023.10212767","DOIUrl":null,"url":null,"abstract":"To improve the trajectory optimization efficiency of robot manipulators, this paper proposes a novel approach for trajectory optimization and control of manipulators based on multistage nonlinear model predictive control (msNLMPC). This approach is realized by using a neural state space model as the prediction model of nonlinear model predictive control (NLMPC). The simulation results show that the actual trajectory of the manipulator in our proposed scheme coincides with the desired trajectory. The manipulator achieves the control task of following the optimal trajectory. Our proposed method improves the trajectory optimization efficiency of the robot manipulator.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"76 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the trajectory optimization efficiency of robot manipulators, this paper proposes a novel approach for trajectory optimization and control of manipulators based on multistage nonlinear model predictive control (msNLMPC). This approach is realized by using a neural state space model as the prediction model of nonlinear model predictive control (NLMPC). The simulation results show that the actual trajectory of the manipulator in our proposed scheme coincides with the desired trajectory. The manipulator achieves the control task of following the optimal trajectory. Our proposed method improves the trajectory optimization efficiency of the robot manipulator.
基于多阶段非线性模型预测控制的轨迹优化与控制方法
为了提高机械手的轨迹优化效率,提出了一种基于多级非线性模型预测控制(msNLMPC)的机械手轨迹优化控制方法。该方法采用神经状态空间模型作为非线性模型预测控制(NLMPC)的预测模型。仿真结果表明,所提方案中机械手的实际轨迹与期望轨迹吻合。机械手完成了沿最优轨迹运动的控制任务。该方法提高了机械手的轨迹优化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信