Scalable RDF triple store using summary of hashed information and Bit comparison

Minho Bae, Hosik Park, Gibeom Lee, Junho Eum, Sangyoon Oh
{"title":"Scalable RDF triple store using summary of hashed information and Bit comparison","authors":"Minho Bae, Hosik Park, Gibeom Lee, Junho Eum, Sangyoon Oh","doi":"10.1109/PACRIM.2015.7334828","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a scalable RDF triple store for massive-scale RDF data that processes the SPARQL query with many join operations in efficient manner. Graph characteristic of RDF data model hinders scalable and efficient indexing and querying over RDF triples. To address the problem, our query processing uses the pruning algorithm based on Bit-structure and summarized information to minimize data-reading. Our approach guarantees scalability and flexibility even for massive-scale RDF data by storing RDF triples in distributed fashion, providing the modifiable structure, and optimizing memory footprint of usage. The experiments shows that our system is better performing for queries with many join operations while uses less memory footprints.","PeriodicalId":350052,"journal":{"name":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","volume":"133 39","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2015.7334828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we proposed a scalable RDF triple store for massive-scale RDF data that processes the SPARQL query with many join operations in efficient manner. Graph characteristic of RDF data model hinders scalable and efficient indexing and querying over RDF triples. To address the problem, our query processing uses the pruning algorithm based on Bit-structure and summarized information to minimize data-reading. Our approach guarantees scalability and flexibility even for massive-scale RDF data by storing RDF triples in distributed fashion, providing the modifiable structure, and optimizing memory footprint of usage. The experiments shows that our system is better performing for queries with many join operations while uses less memory footprints.
可扩展的RDF三重存储,使用散列信息的摘要和位比较
在本文中,我们为大规模RDF数据提出了一个可扩展的RDF三重存储,该存储以高效的方式处理带有许多连接操作的SPARQL查询。RDF数据模型的图形特性阻碍了对RDF三元组进行可伸缩和高效的索引和查询。为了解决这个问题,我们的查询处理使用了基于位结构和汇总信息的剪枝算法来最小化数据读取。我们的方法通过以分布式方式存储RDF三元组、提供可修改的结构和优化使用的内存占用来保证可伸缩性和灵活性,即使对于大规模RDF数据也是如此。实验表明,我们的系统在使用较少内存占用的情况下,对于具有许多连接操作的查询具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信