Adaptive step size independent vector analysis for blind source separation

Yanfeng Liang, S. M. Naqvi, J. Chambers
{"title":"Adaptive step size independent vector analysis for blind source separation","authors":"Yanfeng Liang, S. M. Naqvi, J. Chambers","doi":"10.1109/ICDSP.2011.6004870","DOIUrl":null,"url":null,"abstract":"In this paper, a novel adaptive step size independent vector analysis (ASS-IVA) method is proposed for blind source separation. Independent vector analysis (IVA) can successfully solve the classical permutation problem in the blind source separation (BSS) field. In the ASS-IVA method the step size is adjusted during learning to enhance the convergence behavior of the conventional IVA algorithm. The experimental results confirm that the proposed method improves the convergence speed greatly as compared to the original IVA method, whilst retaining the excellent separation properties of the IVA method.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"87 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, a novel adaptive step size independent vector analysis (ASS-IVA) method is proposed for blind source separation. Independent vector analysis (IVA) can successfully solve the classical permutation problem in the blind source separation (BSS) field. In the ASS-IVA method the step size is adjusted during learning to enhance the convergence behavior of the conventional IVA algorithm. The experimental results confirm that the proposed method improves the convergence speed greatly as compared to the original IVA method, whilst retaining the excellent separation properties of the IVA method.
盲源分离的自适应步长独立向量分析
本文提出了一种新的自适应步长无关矢量分析(ASS-IVA)方法用于盲源分离。独立向量分析(IVA)可以成功地解决盲源分离(BSS)领域的经典排列问题。ASS-IVA方法在学习过程中调整步长,增强了传统IVA算法的收敛性。实验结果表明,与原有的IVA方法相比,该方法在保持IVA方法优良分离特性的同时,大大提高了收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信