Simple baselines can fool 360° saliency metrics

Yasser Abdelaziz Dahou Djilali, Kevin McGuinness, N. O’Connor
{"title":"Simple baselines can fool 360° saliency metrics","authors":"Yasser Abdelaziz Dahou Djilali, Kevin McGuinness, N. O’Connor","doi":"10.1109/ICCVW54120.2021.00418","DOIUrl":null,"url":null,"abstract":"Evaluating a model’s capacity to predict human fixations in 360° scenes is a challenging task. 360° saliency requires different assumptions compared to 2D as a result of the way the saliency maps are collected and pre-processed to account for the difference in statistical bias (Equator vs Center bias). However, the same classical metrics from the 2D saliency literature are typically used to evaluate 360° models. In this paper, we show that a simple constant predictor, i.e. the average map across Salient360 and Sitzman training sets can fool existing metrics and achieve results on par with specialized models. Thus, we propose a new probabilistic metric based on the independent Bernoullis assumption that is more suited to the 360° saliency task.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Evaluating a model’s capacity to predict human fixations in 360° scenes is a challenging task. 360° saliency requires different assumptions compared to 2D as a result of the way the saliency maps are collected and pre-processed to account for the difference in statistical bias (Equator vs Center bias). However, the same classical metrics from the 2D saliency literature are typically used to evaluate 360° models. In this paper, we show that a simple constant predictor, i.e. the average map across Salient360 and Sitzman training sets can fool existing metrics and achieve results on par with specialized models. Thus, we propose a new probabilistic metric based on the independent Bernoullis assumption that is more suited to the 360° saliency task.
简单的基线可以骗过360°显著性指标
评估一个模型在360°场景中预测人类注视的能力是一项具有挑战性的任务。与2D相比,360°显著性需要不同的假设,这是由于显著性图的收集和预处理方式不同,以解释统计偏差(赤道与中心偏差)的差异。然而,2D显著性文献中相同的经典指标通常用于评估360°模型。在本文中,我们展示了一个简单的常量预测器,即跨越Salient360和Sitzman训练集的平均地图,可以欺骗现有的指标,并获得与专门模型相当的结果。因此,我们提出了一个新的基于独立伯努利斯假设的概率度量,它更适合360°显著性任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信