Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements

R. Carrillo, K. Barner
{"title":"Iteratively re-weighted least squares for sparse signal reconstruction from noisy measurements","authors":"R. Carrillo, K. Barner","doi":"10.1109/CISS.2009.5054762","DOIUrl":null,"url":null,"abstract":"Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Finding sparse solutions of under-determined systems of linear equations is a problem of significance importance in signal processing and statistics. In this paper we study an iterative reweighted least squares (IRLS) approach to find sparse solutions of underdetermined system of equations based on smooth approximation of the L0 norm and the method is extended to find sparse solutions from noisy measurements. Analysis of the proposed methods show that weaker conditions on the sensing matrices are required. Simulation results demonstrate that the proposed method requires fewer samples than existing methods, while maintaining a reconstruction error of the same order and demanding less computational complexity.
基于迭代加权最小二乘的噪声测量稀疏信号重构
求解欠定线性方程组的稀疏解是信号处理和统计学中的一个重要问题。本文研究了一种基于L0范数光滑逼近的求欠定方程组稀疏解的迭代重加权最小二乘方法,并将该方法推广到从噪声测量中求稀疏解。对所提方法的分析表明,传感矩阵需要较弱的条件。仿真结果表明,该方法比现有方法需要更少的样本,同时保持了相同阶数的重构误差和较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信