Opinion Dynamics via Search Engines (and Other Algorithmic Gatekeepers)

F. Germano, Francesco Sobbrio
{"title":"Opinion Dynamics via Search Engines (and Other Algorithmic Gatekeepers)","authors":"F. Germano, Francesco Sobbrio","doi":"10.2139/ssrn.2890853","DOIUrl":null,"url":null,"abstract":"Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized framework to study the effects of ranking algorithms on opinion dynamics. We consider rankings that depend on popularity and on personalization. We find that popularity driven rankings can enhance asymptotic learning while personalized ones can both inhibit or enhance it, depending on whether individuals have common or private value preferences. We also find that ranking algorithms can contribute towards the diffusion of misinformation (e.g., “fake news”), since lower ex-ante accuracy of content of minority websites can actually increase their overall traffic share.","PeriodicalId":301794,"journal":{"name":"Communication & Computational Methods eJournal","volume":"13 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communication & Computational Methods eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2890853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized framework to study the effects of ranking algorithms on opinion dynamics. We consider rankings that depend on popularity and on personalization. We find that popularity driven rankings can enhance asymptotic learning while personalized ones can both inhibit or enhance it, depending on whether individuals have common or private value preferences. We also find that ranking algorithms can contribute towards the diffusion of misinformation (e.g., “fake news”), since lower ex-ante accuracy of content of minority websites can actually increase their overall traffic share.
通过搜索引擎(和其他算法看门人)的意见动态
排名算法是互联网时代的信息守门人。我们开发了一个程式化的框架来研究排名算法对意见动态的影响。我们考虑的排名取决于受欢迎程度和个性化。我们发现,人气驱动的排名可以增强渐近学习,而个性化的排名既可以抑制也可以增强渐近学习,这取决于个人是否有共同的或私人的价值偏好。我们还发现,排名算法可以促进错误信息的扩散(例如,“假新闻”),因为少数网站内容的事前准确性较低实际上可以增加其整体流量份额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信