Computationally efficient wavelet packet coding of wide-band stereo audio signals

Mark Black, M. Zeytinoglu
{"title":"Computationally efficient wavelet packet coding of wide-band stereo audio signals","authors":"Mark Black, M. Zeytinoglu","doi":"10.1109/ICASSP.1995.479495","DOIUrl":null,"url":null,"abstract":"This paper presents a new audio compressor based on the wavelet packet (WP) decomposition. The major drawback of the present audio compressors is the large computational effort associated with subband decomposition and psychoacoustic modeling. We integrate the psychoacoustic model with the design of the decomposition filterbank which separates the wideband signal into 28 subbands closely approximating the critical bands. The psychoacoustic model exploits noise masking and joint stereo coding to compress the subband signals. We demonstrate that the WP decomposition provides sufficient resolution to extract the time-frequency characteristics of the input signal. The WP based audio compressor provides transparent sound quality at compression rates comparable to the MPEG compressor with less than one third of the computational effort.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"95 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.479495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper presents a new audio compressor based on the wavelet packet (WP) decomposition. The major drawback of the present audio compressors is the large computational effort associated with subband decomposition and psychoacoustic modeling. We integrate the psychoacoustic model with the design of the decomposition filterbank which separates the wideband signal into 28 subbands closely approximating the critical bands. The psychoacoustic model exploits noise masking and joint stereo coding to compress the subband signals. We demonstrate that the WP decomposition provides sufficient resolution to extract the time-frequency characteristics of the input signal. The WP based audio compressor provides transparent sound quality at compression rates comparable to the MPEG compressor with less than one third of the computational effort.
计算效率高的宽带立体声音频信号小波包编码
提出了一种基于小波包分解的音频压缩器。目前音频压缩器的主要缺点是与子带分解和心理声学建模相关的大量计算工作。我们将心理声学模型与分解滤波器组的设计相结合,该滤波器组将宽带信号分离成28个接近临界带的子带。心理声学模型利用噪声掩蔽和联合立体声编码来压缩子带信号。我们证明了WP分解提供了足够的分辨率来提取输入信号的时频特性。基于WP的音频压缩器以与MPEG压缩器相当的压缩率提供透明的声音质量,而计算工作量不到MPEG压缩器的三分之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信