Voltage Stability Margin Estimation Using Machine Learning Tools

Gabriel Guañuna, S. Chamba, Nelson Granda, J. Cepeda, D. Echeverria, Walter Vargas
{"title":"Voltage Stability Margin Estimation Using Machine Learning Tools","authors":"Gabriel Guañuna, S. Chamba, Nelson Granda, J. Cepeda, D. Echeverria, Walter Vargas","doi":"10.37116/revistaenergia.v20.n1.2023.570","DOIUrl":null,"url":null,"abstract":"Real-time voltage stability assessment, via conventional methods, is a difficult task due to the required large amount of information, high execution times and computational cost. Based on these limitations, this technical work proposes a method for the estimation of the voltage stability margin through the application of artificial intelligence algorithms. For this purpose, several operation scenarios are first generated via Monte Carlo simulations, considering the load variability and the n-1 security criterion. Afterwards, the voltage stability margin of PV curves is determined for each scenario to obtain a database. This information allows structuring a data matrix for training an artificial neural network and a support vector machine, in its regression version, to predict the voltage stability margin, capable of being used in real time. The performance of the prediction tools is evaluated through the mean square error and the coefficient of determination. The proposed methodology is applied to the IEEE 14 bus test system, showing so promising results.","PeriodicalId":234227,"journal":{"name":"Revista Técnica \"energía\"","volume":"15 23","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Técnica \"energía\"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37116/revistaenergia.v20.n1.2023.570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time voltage stability assessment, via conventional methods, is a difficult task due to the required large amount of information, high execution times and computational cost. Based on these limitations, this technical work proposes a method for the estimation of the voltage stability margin through the application of artificial intelligence algorithms. For this purpose, several operation scenarios are first generated via Monte Carlo simulations, considering the load variability and the n-1 security criterion. Afterwards, the voltage stability margin of PV curves is determined for each scenario to obtain a database. This information allows structuring a data matrix for training an artificial neural network and a support vector machine, in its regression version, to predict the voltage stability margin, capable of being used in real time. The performance of the prediction tools is evaluated through the mean square error and the coefficient of determination. The proposed methodology is applied to the IEEE 14 bus test system, showing so promising results.
使用机器学习工具估计电压稳定裕度
由于需要大量的信息,执行时间和计算成本高,通过传统方法进行实时电压稳定性评估是一项困难的任务。基于这些局限性,本技术工作提出了一种应用人工智能算法估计电压稳定裕度的方法。为此,考虑到负载可变性和n-1安全准则,首先通过蒙特卡罗模拟生成了几个操作场景。然后,确定每个场景下PV曲线的电压稳定裕度,得到数据库。这些信息允许构建一个数据矩阵来训练人工神经网络和支持向量机,在其回归版本中,预测电压稳定裕度,能够实时使用。通过均方误差和决定系数来评价预测工具的性能。将该方法应用于ieee14总线测试系统,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信