How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset

R. Abiantun, M. Savvides, B. Kumar
{"title":"How Low Can You Go? Low Resolution Face Recognition Study Using Kernel Correlation Feature Analysis on the FRGCv2 dataset","authors":"R. Abiantun, M. Savvides, B. Kumar","doi":"10.1109/BCC.2006.4341638","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the effect of image resolution of the face recognition grand challenge (FRGC) dataset on the kernel class-dependence feature analysis (KCFA) method. Good performance on low-resolution image data is important for any face recognition system using low- resolution imagery, such as in surveillance footage. We show that KCFA works reliably even at very low resolutions on the FRGC dataset Experiment 4 using the one-to-one matching protocol (greater than 70% verification rate (VR) at 0.1% false accept rate (FAR)). We observe reasonable performance at resolution as low as 16x16. However performance of KCFA degrades significantly below this resolution, but still outperforms the PCA baseline algorithm with 12% VR at 0.1% FAR.","PeriodicalId":226152,"journal":{"name":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","volume":"26 42","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Biometrics Symposium: Special Session on Research at the Biometric Consortium Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2006.4341638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper we investigate the effect of image resolution of the face recognition grand challenge (FRGC) dataset on the kernel class-dependence feature analysis (KCFA) method. Good performance on low-resolution image data is important for any face recognition system using low- resolution imagery, such as in surveillance footage. We show that KCFA works reliably even at very low resolutions on the FRGC dataset Experiment 4 using the one-to-one matching protocol (greater than 70% verification rate (VR) at 0.1% false accept rate (FAR)). We observe reasonable performance at resolution as low as 16x16. However performance of KCFA degrades significantly below this resolution, but still outperforms the PCA baseline algorithm with 12% VR at 0.1% FAR.
你能走多低?基于FRGCv2数据集核相关特征分析的低分辨率人脸识别研究
本文研究了人脸识别大挑战(FRGC)数据集的图像分辨率对核类相关特征分析(KCFA)方法的影响。对于任何使用低分辨率图像的人脸识别系统,如监控录像,在低分辨率图像数据上的良好性能是非常重要的。我们证明,即使在非常低的分辨率下,KCFA也能在FRGC数据集实验4上可靠地工作,使用一对一匹配协议(大于70%的验证率(VR)和0.1%的错误接受率(FAR))。我们在低至16x16的分辨率下观察到合理的性能。然而,KCFA的性能在此分辨率下显着下降,但仍然优于PCA基线算法,在0.1% FAR下具有12%的VR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信