Value and Relation Display for Interactive Exploration of High Dimensional Datasets

Jing Yang, Anilkumar Patro, Shiping Huang, N. K. Mehta, M. Ward, Elke A. Rundensteiner
{"title":"Value and Relation Display for Interactive Exploration of High Dimensional Datasets","authors":"Jing Yang, Anilkumar Patro, Shiping Huang, N. K. Mehta, M. Ward, Elke A. Rundensteiner","doi":"10.1109/INFVIS.2004.71","DOIUrl":null,"url":null,"abstract":"Traditional multidimensional visualization techniques, such as glyphs, parallel coordinates and scatterplot matrices, suffer from clutter at the display level and difficult user navigation among dimensions when visualizing high dimensional datasets. In this paper, we propose a new multidimensional visualization technique named a value and relation (VaR) display, together with a rich set of navigation and selection tools, for interactive exploration of datasets with up to hundreds of dimensions. By explicitly conveying the relationships among the dimensions of a high dimensional dataset, the VaR display helps users grasp the associations among dimensions. By using pixel-oriented techniques to present values of the data items in a condensed manner, the VaR display reveals data patterns in the dataset using as little screen space as possible. The navigation and selection tools enable users to interactively reduce clutter, navigate within the dimension space, and examine data value details within context effectively and efficiently. The VaR display scales well to datasets with large numbers of data items by employing sampling and texture mapping. A case study on a real dataset, as well as the VaR displays of multiple real datasets throughout the paper, reveals how our proposed approach helps users interactively explore high dimensional datasets with large numbers of data items","PeriodicalId":109217,"journal":{"name":"IEEE Symposium on Information Visualization","volume":"29 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2004.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

Traditional multidimensional visualization techniques, such as glyphs, parallel coordinates and scatterplot matrices, suffer from clutter at the display level and difficult user navigation among dimensions when visualizing high dimensional datasets. In this paper, we propose a new multidimensional visualization technique named a value and relation (VaR) display, together with a rich set of navigation and selection tools, for interactive exploration of datasets with up to hundreds of dimensions. By explicitly conveying the relationships among the dimensions of a high dimensional dataset, the VaR display helps users grasp the associations among dimensions. By using pixel-oriented techniques to present values of the data items in a condensed manner, the VaR display reveals data patterns in the dataset using as little screen space as possible. The navigation and selection tools enable users to interactively reduce clutter, navigate within the dimension space, and examine data value details within context effectively and efficiently. The VaR display scales well to datasets with large numbers of data items by employing sampling and texture mapping. A case study on a real dataset, as well as the VaR displays of multiple real datasets throughout the paper, reveals how our proposed approach helps users interactively explore high dimensional datasets with large numbers of data items
高维数据集交互式探索的值和关系显示
传统的多维可视化技术,如字形、平行坐标和散点图矩阵,在显示层面存在混乱,用户在高维数据集可视化时难以在维度之间导航。在本文中,我们提出了一种新的多维可视化技术,称为价值和关系(VaR)显示,以及一套丰富的导航和选择工具,用于多达数百个维度的数据集的交互式探索。通过显式地传达高维数据集的维度之间的关系,VaR显示帮助用户掌握维度之间的关联。通过使用面向像素的技术以浓缩的方式显示数据项的值,VaR显示使用尽可能少的屏幕空间来显示数据集中的数据模式。导航和选择工具使用户能够以交互方式减少混乱,在维度空间中导航,并有效地检查上下文中的数据值细节。通过采样和纹理映射,VaR显示可以很好地扩展到具有大量数据项的数据集。一个真实数据集的案例研究,以及整个论文中多个真实数据集的VaR显示,揭示了我们提出的方法如何帮助用户交互式地探索具有大量数据项的高维数据集
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信