Semantic table structure identification in spreadsheets

Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, Dan Ye
{"title":"Semantic table structure identification in spreadsheets","authors":"Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, Dan Ye","doi":"10.1145/3460319.3464812","DOIUrl":null,"url":null,"abstract":"Spreadsheets are widely used in various business tasks, and contain amounts of valuable data. However, spreadsheet tables are usually organized in a semi-structured way, and contain complicated semantic structures, e.g., header types and relations among headers. Lack of documented semantic table structures, existing data analysis and error detection tools can hardly understand spreadsheet tables. Therefore, identifying semantic table structures in spreadsheet tables is of great importance, and can greatly promote various analysis tasks on spreadsheets. In this paper, we propose Tasi (Table structure identification) to automatically identify semantic table structures in spreadsheets. Based on the contents, styles, and spatial locations in table headers, Tasi adopts a multi-classifier to predict potential header types and relations, and then integrates all header types and relations into consistent semantic table structures. We further propose TasiError, to detect spreadsheet errors based on the identified semantic table structures by Tasi. Our experiments on real-world spreadsheets show that, Tasi can precisely identify semantic table structures in spreadsheets, and TasiError can detect real-world spreadsheet errors with higher precision (75.2%) and recall (82.9%) than existing approaches.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"109 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Spreadsheets are widely used in various business tasks, and contain amounts of valuable data. However, spreadsheet tables are usually organized in a semi-structured way, and contain complicated semantic structures, e.g., header types and relations among headers. Lack of documented semantic table structures, existing data analysis and error detection tools can hardly understand spreadsheet tables. Therefore, identifying semantic table structures in spreadsheet tables is of great importance, and can greatly promote various analysis tasks on spreadsheets. In this paper, we propose Tasi (Table structure identification) to automatically identify semantic table structures in spreadsheets. Based on the contents, styles, and spatial locations in table headers, Tasi adopts a multi-classifier to predict potential header types and relations, and then integrates all header types and relations into consistent semantic table structures. We further propose TasiError, to detect spreadsheet errors based on the identified semantic table structures by Tasi. Our experiments on real-world spreadsheets show that, Tasi can precisely identify semantic table structures in spreadsheets, and TasiError can detect real-world spreadsheet errors with higher precision (75.2%) and recall (82.9%) than existing approaches.
电子表格中的语义表结构识别
电子表格广泛用于各种业务任务,并包含大量有价值的数据。然而,电子表格通常以半结构化的方式组织,并且包含复杂的语义结构,例如标题类型和标题之间的关系。缺乏文档化的语义表结构,现有的数据分析和错误检测工具很难理解电子表格。因此,识别电子表格中的语义表结构非常重要,可以极大地促进电子表格上的各种分析任务。在本文中,我们提出了Tasi(表结构识别)来自动识别电子表格中的语义表结构。Tasi基于表头中的内容、样式和空间位置,采用多分类器预测潜在的头类型和关系,然后将所有头类型和关系集成到一致的语义表结构中。我们进一步提出了TasiError,基于TasiError识别的语义表结构来检测电子表格错误。我们在真实电子表格上的实验表明,Tasi可以精确地识别电子表格中的语义表结构,而TasiError可以比现有方法更高的准确率(75.2%)和召回率(82.9%)检测出真实电子表格中的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信