Controlling Brownian motion applied to macroscopic group robots without mutual communication

T. Itami
{"title":"Controlling Brownian motion applied to macroscopic group robots without mutual communication","authors":"T. Itami","doi":"10.1109/MMAR.2014.6957477","DOIUrl":null,"url":null,"abstract":"We control macroscopic Brownian motion by group robots. To make an object track a required path, feedforward control input is found using our preceding model of continuum mechanical description. We use dynamical balance in continuum mechanics to calculate the feedforward input in each time. We see a phenomenon that the object does not move in a required direction in initial stage of Brownian motion. Due to the phenomenon, large feedback component added to the feedforward input is not avoided to make the object track a required path. We show that feedforward with feedback component works well. But appropriate prediction of a dead time must be incorporated into our continuum model.","PeriodicalId":166287,"journal":{"name":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2014.6957477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We control macroscopic Brownian motion by group robots. To make an object track a required path, feedforward control input is found using our preceding model of continuum mechanical description. We use dynamical balance in continuum mechanics to calculate the feedforward input in each time. We see a phenomenon that the object does not move in a required direction in initial stage of Brownian motion. Due to the phenomenon, large feedback component added to the feedforward input is not avoided to make the object track a required path. We show that feedforward with feedback component works well. But appropriate prediction of a dead time must be incorporated into our continuum model.
布朗运动控制应用于无相互通信的宏观群体机器人
我们用群机器人控制宏观布朗运动。为了使目标沿着所要求的路径运动,前馈控制输入使用我们前面的连续力学描述模型。我们利用连续介质力学中的动态平衡来计算每次的前馈输入。在布朗运动的初始阶段,我们看到物体不按要求的方向运动的现象。由于这种现象,不避免在前馈输入中加入较大的反馈分量,以使目标跟踪所需的路径。我们证明了带有反馈成分的前馈效果很好。但是,对死区时间的适当预测必须纳入我们的连续统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信