Fleche

Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, K. Ren, J. Shu
{"title":"Fleche","authors":"Minhui Xie, Youyou Lu, Jiazhen Lin, Qing Wang, Jian Gao, K. Ren, J. Shu","doi":"10.1145/3492321.3519554","DOIUrl":null,"url":null,"abstract":"Deep learning based models have dominated current production recommendation systems. However, the gap between CPU-side DRAM data accessing and GPU processing still impedes their inference performance. GPU-resident cache can bridge this gap, but we find that existing systems leave the benefits to cache the embedding table, a huge sparse structure, on GPU unexploited. In this paper, we present Fleche, a holistic cache scheme with detailed designs for efficient GPU-resident embedding caching. Fleche (1) uses one cache backend for all embedding tables to improve the total cache utilization, and (2) merges small kernel calls into one unitary call to reduce the overhead of kernel maintenance (e.g., kernel launching and synchronizing). Furthermore, we carefully design the cache query workflow for finer-grain parallelism. Evaluations with real-world datasets show that compared with the prior art, Fleche significantly improves the throughput of embedding layer by 2.0 -- 5.4×, and gets up to 2.4× speedup of end-to-end inference throughput.","PeriodicalId":196414,"journal":{"name":"Proceedings of the Seventeenth European Conference on Computer Systems","volume":"14 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventeenth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3492321.3519554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Deep learning based models have dominated current production recommendation systems. However, the gap between CPU-side DRAM data accessing and GPU processing still impedes their inference performance. GPU-resident cache can bridge this gap, but we find that existing systems leave the benefits to cache the embedding table, a huge sparse structure, on GPU unexploited. In this paper, we present Fleche, a holistic cache scheme with detailed designs for efficient GPU-resident embedding caching. Fleche (1) uses one cache backend for all embedding tables to improve the total cache utilization, and (2) merges small kernel calls into one unitary call to reduce the overhead of kernel maintenance (e.g., kernel launching and synchronizing). Furthermore, we carefully design the cache query workflow for finer-grain parallelism. Evaluations with real-world datasets show that compared with the prior art, Fleche significantly improves the throughput of embedding layer by 2.0 -- 5.4×, and gets up to 2.4× speedup of end-to-end inference throughput.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信