Performance Enhancement of Integrated Circuits and Power Devices via Embedded Diamond Heat Management

S. Shapira
{"title":"Performance Enhancement of Integrated Circuits and Power Devices via Embedded Diamond Heat Management","authors":"S. Shapira","doi":"10.1109/comcas52219.2021.9629062","DOIUrl":null,"url":null,"abstract":"We report the manufacturing and integration of lab grown microcrystaline diamond in the wafer and package of advanced silicon integrated circuits and compound semiconductor processes. Diamond which has a thermal conductivity of 1500-2200 W/(m*K), four times higher than copper and fifteen time higher than silicon, significantly reduces the thermal spreading resistance and the junction / core temperature. We present perfomance stress test results performed on a state of the art processor with embedded diamond heat spreader showing a marked increase in processor speed and reduced core temperature when compared to a the same processor in a standard package. A marked reduction in cores temperature spread is also displayed by the diamond embedded processor. Results for power device performance improvement are also described.","PeriodicalId":354885,"journal":{"name":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"9 S1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comcas52219.2021.9629062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We report the manufacturing and integration of lab grown microcrystaline diamond in the wafer and package of advanced silicon integrated circuits and compound semiconductor processes. Diamond which has a thermal conductivity of 1500-2200 W/(m*K), four times higher than copper and fifteen time higher than silicon, significantly reduces the thermal spreading resistance and the junction / core temperature. We present perfomance stress test results performed on a state of the art processor with embedded diamond heat spreader showing a marked increase in processor speed and reduced core temperature when compared to a the same processor in a standard package. A marked reduction in cores temperature spread is also displayed by the diamond embedded processor. Results for power device performance improvement are also described.
利用嵌入式金刚石热管理提高集成电路和功率器件的性能
我们报告了实验室生长的微晶金刚石在晶圆上的制造和集成以及先进硅集成电路和化合物半导体工艺的封装。金刚石的导热系数为1500 ~ 2200 W/(m*K),比铜高4倍,比硅高15倍,显著降低了热扩散电阻和结芯温度。我们展示了在最先进的嵌入式钻石散热器处理器上进行的性能压力测试结果,显示与标准封装中的相同处理器相比,处理器速度显着提高,核心温度降低。钻石嵌入式处理器也显示了内核温度差的显著降低。并介绍了改进功率器件性能的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信