Object Detection in Cluttered Environments with Sparse Keypoint Selection

Viktor Seib, D. Paulus
{"title":"Object Detection in Cluttered Environments with Sparse Keypoint Selection","authors":"Viktor Seib, D. Paulus","doi":"10.1109/ICCVW54120.2021.00282","DOIUrl":null,"url":null,"abstract":"In cases such as mobile robotic applications with limited computational resources, traditional approaches might be preferred over neural networks. However, open source solutions using traditional computer vision are harder to find than neural network implementations. In this work we address the task of object detection in cluttered environments in point clouds from RGB-D cameras. We compare several open source implementation available in the Point Cloud Library and present a novel and superior solution for this task. We further propose a novel sparse key-point selection approach that combines the advantages of uniform sampling and a dedicated keypoint detection algorithm. Our extensive evaluation shows the validity of our approach, which also improves the results of the compared methods. All code is available on our project repository: https://github.com/vseib/point-cloud-donkey.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"6 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In cases such as mobile robotic applications with limited computational resources, traditional approaches might be preferred over neural networks. However, open source solutions using traditional computer vision are harder to find than neural network implementations. In this work we address the task of object detection in cluttered environments in point clouds from RGB-D cameras. We compare several open source implementation available in the Point Cloud Library and present a novel and superior solution for this task. We further propose a novel sparse key-point selection approach that combines the advantages of uniform sampling and a dedicated keypoint detection algorithm. Our extensive evaluation shows the validity of our approach, which also improves the results of the compared methods. All code is available on our project repository: https://github.com/vseib/point-cloud-donkey.
基于稀疏关键点选择的杂乱环境中的目标检测
在计算资源有限的移动机器人应用程序等情况下,传统方法可能优于神经网络。然而,使用传统计算机视觉的开源解决方案比神经网络实现更难找到。在这项工作中,我们解决了RGB-D相机在点云中混乱环境中的目标检测任务。我们比较了点云库中可用的几个开源实现,并为这项任务提出了一个新颖而优越的解决方案。我们进一步提出了一种新的稀疏关键点选择方法,该方法结合了均匀采样和专用关键点检测算法的优点。我们广泛的评价表明了我们的方法的有效性,这也改进了比较方法的结果。所有代码都可以在我们的项目存储库中获得:https://github.com/vseib/point-cloud-donkey。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信