Polynomial constrained detection for MIMO systems using penalty function

T. Cui, C. Tellambura
{"title":"Polynomial constrained detection for MIMO systems using penalty function","authors":"T. Cui, C. Tellambura","doi":"10.1109/PACRIM.2005.1517227","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a family of approximate maximum likelihood (ML) detectors for multiple-input multiple-output (MlMO) systems by relaxing the ML detection problem. Polynomial constraints are formulated for any signal constellation. The resulting relaxed constrained optimization problem is solved using a penalty function approach. Moreover, to escape from the local minima and to improve the performance of detection, a probabilistic restart algorithm based on noise statistics is proposed. Simulation results show that our polynomial constrained detectors perform better than several existing detectors.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a family of approximate maximum likelihood (ML) detectors for multiple-input multiple-output (MlMO) systems by relaxing the ML detection problem. Polynomial constraints are formulated for any signal constellation. The resulting relaxed constrained optimization problem is solved using a penalty function approach. Moreover, to escape from the local minima and to improve the performance of detection, a probabilistic restart algorithm based on noise statistics is proposed. Simulation results show that our polynomial constrained detectors perform better than several existing detectors.
基于罚函数的MIMO系统多项式约束检测
本文通过放宽多输入多输出(MlMO)系统的最大似然(ML)检测问题,开发了一类近似最大似然(ML)检测器。对于任何信号星座,都建立了多项式约束。用罚函数法求解了松弛约束优化问题。此外,为了摆脱局部极小值,提高检测性能,提出了一种基于噪声统计的概率重启算法。仿真结果表明,多项式约束检测器的性能优于现有的几种检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信