Behavioral modeling of power amplifier with long term memory effects using recurrent neural networks

Chuan Zhang, Shuxia Yan, Qi-jun Zhang, Jianguo Ma
{"title":"Behavioral modeling of power amplifier with long term memory effects using recurrent neural networks","authors":"Chuan Zhang, Shuxia Yan, Qi-jun Zhang, Jianguo Ma","doi":"10.1109/IEEE-IWS.2013.6616831","DOIUrl":null,"url":null,"abstract":"This paper describes recurrent neural network (RNN) technique for behavioral modeling of power amplifier (PA) with short and long term memory effects. RNN can be trained directly using the input-output data without the internal details of the circuit and the trained models can reflect the behavior of nonlinear circuit. Additional signals representing slow memory effects are extracted from the PA input and output signals and are used as extra inputs to RNN model in order to effectively represent long term memory. Examples of RNN modeling of power amplifier with short and long term memory effects are presented.","PeriodicalId":344851,"journal":{"name":"2013 IEEE International Wireless Symposium (IWS)","volume":"6 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2013.6616831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper describes recurrent neural network (RNN) technique for behavioral modeling of power amplifier (PA) with short and long term memory effects. RNN can be trained directly using the input-output data without the internal details of the circuit and the trained models can reflect the behavior of nonlinear circuit. Additional signals representing slow memory effects are extracted from the PA input and output signals and are used as extra inputs to RNN model in order to effectively represent long term memory. Examples of RNN modeling of power amplifier with short and long term memory effects are presented.
基于递归神经网络的长期记忆效应功放行为建模
本文研究了递归神经网络(RNN)技术在具有短期和长期记忆效应的功率放大器(PA)行为建模中的应用。RNN可以直接使用输入输出数据进行训练,而无需考虑电路的内部细节,训练后的模型可以反映非线性电路的行为。从PA输入和输出信号中提取代表慢记忆效应的附加信号,作为RNN模型的额外输入,以便有效地表示长期记忆。给出了具有短期和长期记忆效应的功率放大器的RNN建模实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信