Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation

Bowen Fang, Junxin Chen, Wei Wang, Yicong Zhou
{"title":"Combining Multiple Style Transfer Networks and Transfer Learning For LGE-CMR Segmentation","authors":"Bowen Fang, Junxin Chen, Wei Wang, Yicong Zhou","doi":"10.1109/icassp43922.2022.9746034","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for segmenting late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) in the absence of labeled training data. The proposed method includes a data augmentation part and a segmentation network. Multiple style transfer networks are employed for data augmentation to increase the data diversity, and then the synthetic images are used for training an improved U-Net. Finally, the trained model is fine-tuned with a few LGE images and labels. Experiment results demonstrate the effectiveness and advantages of the proposed method.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"56 44","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an algorithm for segmenting late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) in the absence of labeled training data. The proposed method includes a data augmentation part and a segmentation network. Multiple style transfer networks are employed for data augmentation to increase the data diversity, and then the synthetic images are used for training an improved U-Net. Finally, the trained model is fine-tuned with a few LGE images and labels. Experiment results demonstrate the effectiveness and advantages of the proposed method.
结合多风格迁移网络和迁移学习的大型cmr分割
本文提出了一种在没有标记训练数据的情况下进行晚期钆增强心脏磁共振(LGE-CMR)分割的算法。该方法包括一个数据增强部分和一个分割网络。采用多风格迁移网络进行数据增强,增加数据多样性,然后使用合成图像训练改进的U-Net。最后,使用少量LGE图像和标签对训练好的模型进行微调。实验结果证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信