A new and efficient FFT algorithm for distributed memory systems

N. Anupindi, M. An, J. Cooley, Q. Yang
{"title":"A new and efficient FFT algorithm for distributed memory systems","authors":"N. Anupindi, M. An, J. Cooley, Q. Yang","doi":"10.1109/ICPADS.1994.590059","DOIUrl":null,"url":null,"abstract":"This paper presents a new and optimal parallel implementation of multidimensional fast Fourier transform algorithm on distributed memory multiprocessors. Its optimality is obtained by minimizing the number of message passings necessary, at the cost of increase in message length. This distinctive feature of the new algorithm effectively utilizes the important architectural property of most of today's distributed memory multiprocessors-wormhole routing for interprocessor communications. By using the algebra of stride permutations and tenser products as a mathematical tool, we are able to derive and formulate an efficient data partition and communication scheme that reduces communication cost from O(N/sup 2/) required for the best known FFT to O(N) on an N/sup 2/-processor machine. Our data partition scheme is natural and efficient for solving discretized boundary value problems such as partial differential equations and finite element analysis. To evaluate the actual performance of our new algorithm in comparison with other existing parallel FFT algorithms, we have carried out implementation experiments on the Intel's Touchstone Delta machine.","PeriodicalId":154429,"journal":{"name":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1994.590059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new and optimal parallel implementation of multidimensional fast Fourier transform algorithm on distributed memory multiprocessors. Its optimality is obtained by minimizing the number of message passings necessary, at the cost of increase in message length. This distinctive feature of the new algorithm effectively utilizes the important architectural property of most of today's distributed memory multiprocessors-wormhole routing for interprocessor communications. By using the algebra of stride permutations and tenser products as a mathematical tool, we are able to derive and formulate an efficient data partition and communication scheme that reduces communication cost from O(N/sup 2/) required for the best known FFT to O(N) on an N/sup 2/-processor machine. Our data partition scheme is natural and efficient for solving discretized boundary value problems such as partial differential equations and finite element analysis. To evaluate the actual performance of our new algorithm in comparison with other existing parallel FFT algorithms, we have carried out implementation experiments on the Intel's Touchstone Delta machine.
一种新的高效的分布式存储系统FFT算法
本文提出了一种新的多维快速傅立叶变换算法在分布式存储多处理器上的最优并行实现。它的最优性是通过最小化必要的消息传递数量来实现的,代价是增加消息长度。新算法的这一独特特性有效地利用了当今大多数分布式内存多处理器的重要架构属性——用于处理器间通信的虫洞路由。通过使用跨位置换代数和张量积作为数学工具,我们能够推导并制定一种有效的数据分区和通信方案,将通信成本从最著名的FFT所需的O(N/sup 2/)降低到N/sup 2/处理器机器上的O(N)。我们的数据划分方案对于求解偏微分方程和有限元分析等离散边值问题是自然有效的。为了评估我们的新算法与其他现有并行FFT算法的实际性能,我们在英特尔的Touchstone Delta机器上进行了实现实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信