Incremental updating Algorithm Based on Artificial Immune System For Mining Association Rules

Yidan Su, Xinyi Gu, Zhujuan Li
{"title":"Incremental updating Algorithm Based on Artificial Immune System For Mining Association Rules","authors":"Yidan Su, Xinyi Gu, Zhujuan Li","doi":"10.1109/ICEBE.2006.64","DOIUrl":null,"url":null,"abstract":"A new algorithm is developed based on artificial immune system and on the improved model for association rules mining. The algorithm is both scalable and efficient in discovering significant relationships in weighted settings as illustrated by experiments performed on Web usage datasets. We propose a strategy for maintaining association rules in dynamic databases. This method uses weighting technique to highlight new data. The experiments have shown that our approach is efficient and promising","PeriodicalId":439165,"journal":{"name":"2006 IEEE International Conference on e-Business Engineering (ICEBE'06)","volume":"17 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on e-Business Engineering (ICEBE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEBE.2006.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

A new algorithm is developed based on artificial immune system and on the improved model for association rules mining. The algorithm is both scalable and efficient in discovering significant relationships in weighted settings as illustrated by experiments performed on Web usage datasets. We propose a strategy for maintaining association rules in dynamic databases. This method uses weighting technique to highlight new data. The experiments have shown that our approach is efficient and promising
基于人工免疫系统的关联规则挖掘增量更新算法
提出了一种基于人工免疫系统和改进模型的关联规则挖掘新算法。在Web使用数据集上进行的实验表明,该算法在发现加权设置中的重要关系方面既可扩展又有效。提出了一种在动态数据库中维护关联规则的策略。该方法使用加权技术突出显示新数据。实验表明,我们的方法是有效的和有前途的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信