Program Overview: Vortex Interaction Aerodynamics Relevant to Military Air Vehicle Performance
J. Luckring, N. Taylor, S. Hitzel
{"title":"Program Overview: Vortex Interaction Aerodynamics Relevant to Military Air Vehicle Performance","authors":"J. Luckring, N. Taylor, S. Hitzel","doi":"10.2514/6.2022-0025","DOIUrl":null,"url":null,"abstract":"1. The number of special sessions was altered from seven to six after paper submission due to Covid-19. Replace content of Table 1 on page 9 with the following image: (Table presented). 2. Edit the first sentence of section C, next to Table 1, from AVT-316 is entering its final year of research, and seven special sessions have been established to highlight the AVT-316 research findings to date. to AVT-316 is entering its final year of research, and six special sessions have been established to highlight the AVT-316 research findings to date. Here the word ‘seven’ has been changed to ‘six.’ 3. SciTech 2022 references have had paper numbers added. These were only available after paper submission. Replace references 16-36 with the following: [16] Hitzel, S. M., “Combat Aircraft Vortex Interaction - Design, Physics & CFD-Tools,” AIAA Paper No. 2022-0156, 2022. [17] Breitsamter, C., and Sedlacek, D., “Aerodynamic Characteristics and Topology of Interfering Vortex Systems at Hybrid Delta Wings,” AIAA Paper No. 2022-0026, 2022. [18] Guilmineau, E., Wackers, J., and Visonneau, M., “Computational Analysis of Subsonic Vortex Interaction on Multi Swept Delta Wing Configurations,” AIAA Paper No. 2022-0027, 2022. [19] Schütte, A., and Werner, M., “Turbulence Model Effects on the Prediction of Transonic Vortex Interaction on a Multi-Swept Delta Wing,” AIAA Paper No. 2022-0295, 2022. [20] Hövelmann, A., Winkler, A., Pfnür, S., and Hitzel, S. M., “Hybrid-Delta Wing Simulations – Industrial Application for Combat Aircraft Design,” AIAA Paper No. 2022-0157, 2022. [21] Ghoreyshi, M., von Rooij, M., and Nangia, R. K., “NATO AVT--316, Multi-Swept Combat Wing Design – Aerodynamic Ways Towards a Robust Flight Envelope,” AIAA Paper No. 2022-0296, 2022. [22] Jirásek, A., Seidel, J., Ghoreyshi, M., and Aref, Pooneh, “Design Perspectives of a System Identification Approach of the NATO AVT-316 Multi-Swept Wing Aerodynamics,” AIAA Paper No. 2022-0297, 2022. [23] Breitsamter, C., Sedlacek, D., Guilmineau, E., Wackers, J., and Visonneau, M., “Assessment of Hybrid Delta Wing Vortex Flow Investigation – Part I at Subsonic Conditions,” AIAA Paper No. 2022-0565, 2022. [24] Russel, A., Peshkin, D., Werner, M., and Eccleston, S., “Assessment of Hybrid Delta Wing Vortex Flow Investigation – Part II at Transonic Conditions,” AIAA Paper No. 2022-0158, 2022. [25] Hitzel, S. M., “Status of Vortex Interaction on Combat Aircraft - Physics Understood, Simulation Tool Demands, Quality & Cost,” AIAA Paper No. 2022-0159, 2022. [26] Taylor, N. T., “AVT-316 Missile Facet: Overview of its Formation, Objectives and Manner of Working,” AIAA Paper No. 2022-0001, 2022. [27] Schnepf, C., Dikbas, E., Loupy, G. JM., DeSpirito, J., Tormalm, M. H., Anderson, M., and Shaw, S., “The Influence of the Computational Mesh on the Prediction of Vortex Interactions about a Generic Missile Airframe,” AIAA Paper No. 2022-1176, 2022. [28] Park, M. A., “The Influence of Adaptive Mesh Refinement on the Prediction of Vortex Interactions about a Generic Missile Airframe,” AIAA Paper No. 2022-1177, 2022. [29] Anderson, M., “The Influence of the Numerical Scheme in Predictions of Vortex Interaction about a Generic Missile Airframe,” AIAA Paper No. 2022-1178, 2022. [30] Shaw, S., “The Influence of Modelling in Predictions of Vortex Interactions About a Generic Missile Airframe: RANS,” AIAA Paper No. 2022-0416, 2022. [31] Tormalm, M. H., “The Influence of Scale Resolving Simulations in Predictions of Vortex Interaction about a Generic Missile Airframe,” AIAA Paper No. 2022-1685, 2022. [32] Barakos, G. N., Boychev, K., and Steijl, R., “Simulations of flows around complex and simplified supersonic store geometries at high incidence angles using statistical and scale-resolving turbulence models,” AIAA Paper No. 2022-1686, 2022. [33] Loupy, G. J. M., “A Focused Study into the Prediction of Vortex Formation about Generic Missile and Combat Aircraft Airframes,” AIAA Paper No. 2022-0160, 2022. [34] Schnepf, C. and Tormalm, M. H., “Comparisons of predicted and measured aerodynamic characteristics of the DLR LK6E2 missile airframe,” AIAA Paper No. 2022-2307, 2022. [35] Schnepf, C., Dikbas, E., Loupy, G. JM., Cesur, I. S., DeSpirito, J., and Tormalm, M. H., “Comparisons of Predicted and Measured Aerodynamic Characteristics of the DLR LK6E2 Missile Airframe (Scale Resolving),” AIAA Paper No. 2022-2308, 2022. [36] Taylor, N., “AVT-316 Missile Facet: Lessons learned concerning the prediction of Vortex Flow Interactions about Generic Missile Configurations,” AIAA Paper No. 2022-0002, 2022. © 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.","PeriodicalId":192386,"journal":{"name":"AIAA SCITECH 2022 Forum","volume":" 46","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA SCITECH 2022 Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2022-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
1. The number of special sessions was altered from seven to six after paper submission due to Covid-19. Replace content of Table 1 on page 9 with the following image: (Table presented). 2. Edit the first sentence of section C, next to Table 1, from AVT-316 is entering its final year of research, and seven special sessions have been established to highlight the AVT-316 research findings to date. to AVT-316 is entering its final year of research, and six special sessions have been established to highlight the AVT-316 research findings to date. Here the word ‘seven’ has been changed to ‘six.’ 3. SciTech 2022 references have had paper numbers added. These were only available after paper submission. Replace references 16-36 with the following: [16] Hitzel, S. M., “Combat Aircraft Vortex Interaction - Design, Physics & CFD-Tools,” AIAA Paper No. 2022-0156, 2022. [17] Breitsamter, C., and Sedlacek, D., “Aerodynamic Characteristics and Topology of Interfering Vortex Systems at Hybrid Delta Wings,” AIAA Paper No. 2022-0026, 2022. [18] Guilmineau, E., Wackers, J., and Visonneau, M., “Computational Analysis of Subsonic Vortex Interaction on Multi Swept Delta Wing Configurations,” AIAA Paper No. 2022-0027, 2022. [19] Schütte, A., and Werner, M., “Turbulence Model Effects on the Prediction of Transonic Vortex Interaction on a Multi-Swept Delta Wing,” AIAA Paper No. 2022-0295, 2022. [20] Hövelmann, A., Winkler, A., Pfnür, S., and Hitzel, S. M., “Hybrid-Delta Wing Simulations – Industrial Application for Combat Aircraft Design,” AIAA Paper No. 2022-0157, 2022. [21] Ghoreyshi, M., von Rooij, M., and Nangia, R. K., “NATO AVT--316, Multi-Swept Combat Wing Design – Aerodynamic Ways Towards a Robust Flight Envelope,” AIAA Paper No. 2022-0296, 2022. [22] Jirásek, A., Seidel, J., Ghoreyshi, M., and Aref, Pooneh, “Design Perspectives of a System Identification Approach of the NATO AVT-316 Multi-Swept Wing Aerodynamics,” AIAA Paper No. 2022-0297, 2022. [23] Breitsamter, C., Sedlacek, D., Guilmineau, E., Wackers, J., and Visonneau, M., “Assessment of Hybrid Delta Wing Vortex Flow Investigation – Part I at Subsonic Conditions,” AIAA Paper No. 2022-0565, 2022. [24] Russel, A., Peshkin, D., Werner, M., and Eccleston, S., “Assessment of Hybrid Delta Wing Vortex Flow Investigation – Part II at Transonic Conditions,” AIAA Paper No. 2022-0158, 2022. [25] Hitzel, S. M., “Status of Vortex Interaction on Combat Aircraft - Physics Understood, Simulation Tool Demands, Quality & Cost,” AIAA Paper No. 2022-0159, 2022. [26] Taylor, N. T., “AVT-316 Missile Facet: Overview of its Formation, Objectives and Manner of Working,” AIAA Paper No. 2022-0001, 2022. [27] Schnepf, C., Dikbas, E., Loupy, G. JM., DeSpirito, J., Tormalm, M. H., Anderson, M., and Shaw, S., “The Influence of the Computational Mesh on the Prediction of Vortex Interactions about a Generic Missile Airframe,” AIAA Paper No. 2022-1176, 2022. [28] Park, M. A., “The Influence of Adaptive Mesh Refinement on the Prediction of Vortex Interactions about a Generic Missile Airframe,” AIAA Paper No. 2022-1177, 2022. [29] Anderson, M., “The Influence of the Numerical Scheme in Predictions of Vortex Interaction about a Generic Missile Airframe,” AIAA Paper No. 2022-1178, 2022. [30] Shaw, S., “The Influence of Modelling in Predictions of Vortex Interactions About a Generic Missile Airframe: RANS,” AIAA Paper No. 2022-0416, 2022. [31] Tormalm, M. H., “The Influence of Scale Resolving Simulations in Predictions of Vortex Interaction about a Generic Missile Airframe,” AIAA Paper No. 2022-1685, 2022. [32] Barakos, G. N., Boychev, K., and Steijl, R., “Simulations of flows around complex and simplified supersonic store geometries at high incidence angles using statistical and scale-resolving turbulence models,” AIAA Paper No. 2022-1686, 2022. [33] Loupy, G. J. M., “A Focused Study into the Prediction of Vortex Formation about Generic Missile and Combat Aircraft Airframes,” AIAA Paper No. 2022-0160, 2022. [34] Schnepf, C. and Tormalm, M. H., “Comparisons of predicted and measured aerodynamic characteristics of the DLR LK6E2 missile airframe,” AIAA Paper No. 2022-2307, 2022. [35] Schnepf, C., Dikbas, E., Loupy, G. JM., Cesur, I. S., DeSpirito, J., and Tormalm, M. H., “Comparisons of Predicted and Measured Aerodynamic Characteristics of the DLR LK6E2 Missile Airframe (Scale Resolving),” AIAA Paper No. 2022-2308, 2022. [36] Taylor, N., “AVT-316 Missile Facet: Lessons learned concerning the prediction of Vortex Flow Interactions about Generic Missile Configurations,” AIAA Paper No. 2022-0002, 2022. © 2022, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
项目概述:与军用飞行器性能相关的涡旋相互作用空气动力学
1. 由于新冠肺炎疫情,特别会议从提交论文后的7次改为6次。将第9页表1的内容替换为下图:(见表)。2. 编辑表1旁边C部分的第一句话,AVT-316进入了研究的最后一年,已经建立了七个特别会议来突出AVT-316迄今为止的研究成果。AVT-316进入了研究的最后一年,已经建立了六个特别会议来突出AVT-316迄今为止的研究成果。这里的“七”字被改成了“六”。“3。sciitech 2022参考文献已添加论文编号。这些只有在论文提交后才可用。[16]李志强,“涡旋与涡旋交互作用的设计、物理和CFD-Tools”,中国机械工程学报,No. 22-0156, 2022。[17]张建军,张建军,“混合动力三角翼干涉涡系统的气动特性与拓扑结构”,航空工程学报,第22- 26期,2012。[18]张建军,张建军,张建军,“基于多后掠三角翼结构的亚声速涡相互作用计算分析”,航空工程学报,第22- 26期,2012。[19]王晓明,王晓明,“湍流模型对多后向三角翼跨声速涡相互作用的影响”,航空工程学报,第2期,2012。[20]王晓明,王晓明,王晓明,“混合动力三角翼在飞机设计中的应用”,航空工程学报,第2期,2012。[21]张建军,张建军,张建军,“基于多后掠翼的飞行包线设计方法研究”,航空工程学报,第22- 22期,2012。[22]王晓明,王晓明,王晓明,“基于多后掠翼气动特性的飞机气动性能评价方法研究”,航空工程学报,第22卷第2期,2012。[23]张建军,张建军,张建军,“混合三角翼涡流特性的数值模拟研究”,航空工程学报,第2期,2012。[24]李建军,张建军,张建军,“混合三角翼涡流特性的数值模拟研究”,航空工程学报,第2期,2012。[25]李志强,“涡旋耦合在飞机上的应用”,机械工程学报,第2期,2012。[26]张志强,“基于多目标的AVT-316型导弹的设计与性能研究”,中国机械工程学报,No. 22-0001, 2012。[27]李建军,李建军,李建军,等。, DeSpirito, J., Tormalm, M. H., Anderson, M.和Shaw, S.,“计算网格对通用导弹机身涡相互作用预测的影响”,美国航空工程学报,第2022-1176期,2022。[28]张晓明,“基于自适应网格优化的导弹机身涡相互作用预测方法”,航空工程学报,第22- 17期,2012。[29]张志强,“涡旋与涡旋相互作用的数值模拟”,航空工程学报,第2期,2012。[30]张志强,“涡旋与涡旋相互作用的关系”,航空工程学报,第4期,2012。[31]张晓明,王晓明,“基于尺度解析的导弹机身涡相互作用预测方法研究”,航空工程学报,第22- 22期,2012。[32]张建军,张建军,张建军,“基于多尺度分辨的超音速流场模拟”,中国机械工程学报(自然科学版),2013,31(4):444 - 444。[33]张建军,王晓明,“基于多尺度涡旋的飞机涡旋预测研究”,航空工程学报,第2期,2012。[34]张建军,张建军,张建军,“基于amesames仿真的LK6E2型导弹的气动特性研究”,航空工程学报,第22- 22期,2012。[35]李建军,李建军,李建军,等。陈志强,陈志强,陈志强,“DLR LK6E2导弹机体气动特性预测与实测比较(尺度解析)”,中国航空工程学报,第22-23期,2022。[36]张晓明,“基于涡流模型的导弹涡流预测方法研究”,中国机械工程学报,第22- 22期,2012。©2022,美国航空航天研究所股份有限公司,AIAA。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。