Linear symmetry of nonlinear systems

D. Cheng, Guowu Yang
{"title":"Linear symmetry of nonlinear systems","authors":"D. Cheng, Guowu Yang","doi":"10.1109/CDC.2001.981164","DOIUrl":null,"url":null,"abstract":"This paper tackles the symmetries of control systems. Main attention has been focused on the linear symmetry of affine nonlinear systems. That is, the symmetry under the action of a sub-group of general linear group GL(n,R). The structure of the groups of symmetry and their Lie algebras is investigated. Using left semi-tensor product, a complete classification of symmetric plane systems is presented. Finally, a set of linear algebraic equations are presented, whose solutions provide the largest Lie algebra. Its connected Lie group is the largest one, with which the system is symmetric.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":" 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.981164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper tackles the symmetries of control systems. Main attention has been focused on the linear symmetry of affine nonlinear systems. That is, the symmetry under the action of a sub-group of general linear group GL(n,R). The structure of the groups of symmetry and their Lie algebras is investigated. Using left semi-tensor product, a complete classification of symmetric plane systems is presented. Finally, a set of linear algebraic equations are presented, whose solutions provide the largest Lie algebra. Its connected Lie group is the largest one, with which the system is symmetric.
非线性系统的线性对称性
本文研究控制系统的对称性问题。人们主要关注仿射非线性系统的线性对称性。即一般线性群GL(n,R)的子群作用下的对称性。研究了对称群及其李代数的结构。利用左半张量积,给出了对称平面系统的完全分类。最后,给出了一组线性代数方程,其解提供了最大李代数。它的连通李群是最大的,系统与之对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信