An adaptive vector quantization based on neural network

Qi Bensheng, Qi Jianqin, AnPin, Zhang Dian-cheng
{"title":"An adaptive vector quantization based on neural network","authors":"Qi Bensheng, Qi Jianqin, AnPin, Zhang Dian-cheng","doi":"10.1109/ICSIGP.1996.566588","DOIUrl":null,"url":null,"abstract":"Some vector quantization algorithm are first surveyed. Then, an adaptive vector quantization method for image coding based on a neural network is proposed. This method first partitions the image into a subimage and transforms them with the DCT, and then classifies and encodes them in the transformed domain using frequency sensitive competitive learning (FSCL). The experimental results show that this VQ method has no local region distortion and a high compression ratio.","PeriodicalId":385432,"journal":{"name":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","volume":"132 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Signal Processing (ICSP'96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIGP.1996.566588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some vector quantization algorithm are first surveyed. Then, an adaptive vector quantization method for image coding based on a neural network is proposed. This method first partitions the image into a subimage and transforms them with the DCT, and then classifies and encodes them in the transformed domain using frequency sensitive competitive learning (FSCL). The experimental results show that this VQ method has no local region distortion and a high compression ratio.
基于神经网络的自适应矢量量化
首先介绍了一些矢量量化算法。然后,提出了一种基于神经网络的自适应矢量量化图像编码方法。该方法首先将图像分割成一个子图像,并对其进行DCT变换,然后在变换后的域中使用频率敏感竞争学习(FSCL)对其进行分类编码。实验结果表明,该方法没有局部失真,具有较高的压缩比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信