MIMO radar adaptive Bayesian detection in compound-Gaussian clutter with inverse Gamma texture

Tianxian Zhang, Xueting Li, L. Kong, Xiaobo Yang, Rick S. Blum
{"title":"MIMO radar adaptive Bayesian detection in compound-Gaussian clutter with inverse Gamma texture","authors":"Tianxian Zhang, Xueting Li, L. Kong, Xiaobo Yang, Rick S. Blum","doi":"10.1109/RADAR.2016.7485087","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of adaptive multiple-input multiple-output (MIMO) radar detection in heterogeneous environment with compound-Gaussian clutter. The clutter covariances are assumed to be random and different from one transmit/receive pair to another with a priori knowledge about the environment. A two-step strategy is employed to design adaptive detector. Firstly, we obtain the generalized likelihood ratio test (GLRT) detector by assuming the known covariance matrices. Then, we derive the maximum a posteriori (MAP) estimator of the matrices by exploiting the Bayesian technique, and replace the given covariance matrices in the obtained GLRT detector with MAP estimates. Finally, we evaluate the proposed adaptive Bayesian detector via numerical simulations.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":" 99","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the problem of adaptive multiple-input multiple-output (MIMO) radar detection in heterogeneous environment with compound-Gaussian clutter. The clutter covariances are assumed to be random and different from one transmit/receive pair to another with a priori knowledge about the environment. A two-step strategy is employed to design adaptive detector. Firstly, we obtain the generalized likelihood ratio test (GLRT) detector by assuming the known covariance matrices. Then, we derive the maximum a posteriori (MAP) estimator of the matrices by exploiting the Bayesian technique, and replace the given covariance matrices in the obtained GLRT detector with MAP estimates. Finally, we evaluate the proposed adaptive Bayesian detector via numerical simulations.
具有逆伽玛纹理的复合高斯杂波中MIMO雷达自适应贝叶斯检测
研究了复合高斯杂波环境下多输入多输出(MIMO)雷达自适应检测问题。杂波协方差假设是随机的,并且在对环境有先验知识的情况下,从一个发射/接收对到另一个发射/接收对是不同的。采用两步法设计自适应检测器。首先,假设已知协方差矩阵,得到广义似然比检验(GLRT)检测器;然后,利用贝叶斯技术推导出矩阵的最大后验估计量(MAP),并将得到的GLRT检测器中给定的协方差矩阵替换为MAP估计。最后,通过数值模拟对所提出的自适应贝叶斯检测器进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信