A Preliminary Investigation into Approximating Power Transistor Switching Behavior using a Multilayer Perceptron

Jacob Reynvaan, Monika Stipsitz, Philipp Skoff, Thomas Langbauer, A. Connaughton
{"title":"A Preliminary Investigation into Approximating Power Transistor Switching Behavior using a Multilayer Perceptron","authors":"Jacob Reynvaan, Monika Stipsitz, Philipp Skoff, Thomas Langbauer, A. Connaughton","doi":"10.1109/DMC55175.2022.9906544","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for reproducing key characteristics of non-linear, high frequency switching transients using a multilayer perceptron neural network. Training data is generated using variable time-step transient simulations of a half-bridge switching cell of SPICE transistor models together with constrained yet randomized combinations of DC-link voltage, drain currents and lumped loop inductances. Using the example of peak turn-OFF voltage overshoot for SiC and Si power transistors, the multilayer perceptrons show a mean error of less than (0.9 ± 1.3)%. The predictions of the multilayer perceptron are then compared to preliminary measurements made using a SiC half-bridge test-bench where good agreement is observed especially for higher drain currents. With continued development, such a neural network could be used in coarse, fixed-time-step simulations of any “half-bridge-based” circuit to offer typically unavailable high-fidelity information with negligible computation time. For example, a designer could choose a transistor and quickly see the limits on allowable loop inductance to avoid excessive voltage overshoot for their simulated current waveforms, or see an estimate for voltage overshoot if the loop inductances are known.","PeriodicalId":245908,"journal":{"name":"2022 IEEE Design Methodologies Conference (DMC)","volume":" 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Design Methodologies Conference (DMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMC55175.2022.9906544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an approach for reproducing key characteristics of non-linear, high frequency switching transients using a multilayer perceptron neural network. Training data is generated using variable time-step transient simulations of a half-bridge switching cell of SPICE transistor models together with constrained yet randomized combinations of DC-link voltage, drain currents and lumped loop inductances. Using the example of peak turn-OFF voltage overshoot for SiC and Si power transistors, the multilayer perceptrons show a mean error of less than (0.9 ± 1.3)%. The predictions of the multilayer perceptron are then compared to preliminary measurements made using a SiC half-bridge test-bench where good agreement is observed especially for higher drain currents. With continued development, such a neural network could be used in coarse, fixed-time-step simulations of any “half-bridge-based” circuit to offer typically unavailable high-fidelity information with negligible computation time. For example, a designer could choose a transistor and quickly see the limits on allowable loop inductance to avoid excessive voltage overshoot for their simulated current waveforms, or see an estimate for voltage overshoot if the loop inductances are known.
利用多层感知器逼近功率晶体管开关行为的初步研究
本文提出了一种利用多层感知器神经网络再现非线性高频开关瞬态的关键特性的方法。训练数据是使用SPICE晶体管模型的半桥开关单元的可变时间步长瞬态仿真以及约束但随机的直流链路电压、漏极电流和集总环路电感组合生成的。以SiC和Si功率晶体管的峰值关断电压超调为例,多层感知器的平均误差小于(0.9±1.3)%。然后将多层感知器的预测与使用SiC半桥试验台进行的初步测量进行比较,其中观察到良好的一致性,特别是对于更高的漏极电流。随着不断发展,这种神经网络可以用于任何“半桥”电路的粗糙、固定时间步长模拟,以提供通常不可用的高保真信息,计算时间可以忽略不计。例如,设计人员可以选择一个晶体管,并快速查看允许的环路电感的限制,以避免其模拟电流波形的过电压超调,或者如果环路电感已知,则查看电压超调的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信