A Composite 3D-2D Visual Surface Defects Inspection Method for Steel Bar Intelligent Manufacturing

Feng Xu, Jinqiang Wang, Guihua Liu, Kangjia Wang
{"title":"A Composite 3D-2D Visual Surface Defects Inspection Method for Steel Bar Intelligent Manufacturing","authors":"Feng Xu, Jinqiang Wang, Guihua Liu, Kangjia Wang","doi":"10.1109/ICDSBA51020.2020.00080","DOIUrl":null,"url":null,"abstract":"A composite 3D-2D visual surface defects inspection scheme based on combining active 3D visual inspection with 2D image texture extraction is presented for steel bar intelligent manufacturing. The active 3D visual inspection method is used to detect the surface defects with poor contrast; the 2D image texture extraction method is used to detect the surface defects with tiny width. The variable defects can be identified through fusion of the acquired 3D and 2D information of steel bar. The fundamental derivation of composite 3D-2D visual inspection is given. The experimental results validate and demonstrate the feasibility of the proposed approach.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":" 715","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A composite 3D-2D visual surface defects inspection scheme based on combining active 3D visual inspection with 2D image texture extraction is presented for steel bar intelligent manufacturing. The active 3D visual inspection method is used to detect the surface defects with poor contrast; the 2D image texture extraction method is used to detect the surface defects with tiny width. The variable defects can be identified through fusion of the acquired 3D and 2D information of steel bar. The fundamental derivation of composite 3D-2D visual inspection is given. The experimental results validate and demonstrate the feasibility of the proposed approach.
钢筋智能制造3D-2D复合视觉表面缺陷检测方法
针对钢筋智能制造,提出了一种基于主动三维视觉检测与二维图像纹理提取相结合的三维-二维复合表面缺陷视觉检测方案。采用主动三维目视检测方法检测对比度差的表面缺陷;采用二维图像纹理提取方法检测微小宽度的表面缺陷。通过对获取的钢筋三维和二维信息进行融合,可以识别出可变缺陷。给出了三维-二维复合视觉检测的基本推导。实验结果验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信