Multi-disciplinary approach to design of a power electronics module for harsh environments

M. Lindgren, I. Belov, A. Johansson, Torkel Danielsson, N. Gunnarsson, P. Leisner
{"title":"Multi-disciplinary approach to design of a power electronics module for harsh environments","authors":"M. Lindgren, I. Belov, A. Johansson, Torkel Danielsson, N. Gunnarsson, P. Leisner","doi":"10.1109/ESIME.2009.4938500","DOIUrl":null,"url":null,"abstract":"A set of experimental and computer simulation methods has been applied to reliability analysis of a newly designed resin transfer molded power electronics module for automotive applications, comprising the glass-fiber epoxy multi-layer PCB, populated with various electronic packages. Evaluation of thermo-mechanical stability, determination of moisture ingress, and testing the adhesion quality between the molding compound and the module PCB have been performed along with investigation of heat transfer paths in the module. The experiments in harsh environments have revealed thermo-mechanical stability and acceptable moisture ingress for the module test samples with relatively large BGA components on the glass-fiber epoxy PCBs of different thickness and different solder mask types. Thermal images of the module have been obtained and the CFD model was created and validated with temperature measurements in power-on tests. Extreme heat dissipation modes have been studied by modeling.","PeriodicalId":225582,"journal":{"name":"EuroSimE 2009 - 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EuroSimE 2009 - 10th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2009.4938500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A set of experimental and computer simulation methods has been applied to reliability analysis of a newly designed resin transfer molded power electronics module for automotive applications, comprising the glass-fiber epoxy multi-layer PCB, populated with various electronic packages. Evaluation of thermo-mechanical stability, determination of moisture ingress, and testing the adhesion quality between the molding compound and the module PCB have been performed along with investigation of heat transfer paths in the module. The experiments in harsh environments have revealed thermo-mechanical stability and acceptable moisture ingress for the module test samples with relatively large BGA components on the glass-fiber epoxy PCBs of different thickness and different solder mask types. Thermal images of the module have been obtained and the CFD model was created and validated with temperature measurements in power-on tests. Extreme heat dissipation modes have been studied by modeling.
针对恶劣环境设计电力电子模块的多学科方法
一套实验和计算机模拟方法已应用于新设计的汽车用树脂传递模压电力电子模块的可靠性分析,该模块由玻璃纤维环氧树脂多层PCB组成,填充了各种电子封装。热机械稳定性评估、吸湿性测定、模塑复合材料与模块PCB之间的粘附质量测试,以及模块内传热路径的研究。在恶劣环境下的实验表明,不同厚度和不同阻焊类型的环氧玻璃纤维pcb上具有较大BGA分量的模块测试样品具有热机械稳定性和可接受的吸湿性。获得了模块的热图像,建立了CFD模型,并通过上电测试中的温度测量进行了验证。通过模拟研究了极端的散热模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信