Data-driven Modeling and Predictive Control of Maximum Pressure Rise Rate in RCCI Engines

L. N. A. Basina, Behrouz K. Irdmousa, J. Mohammadpour, H. Borhan, J. Naber, M. Shahbakhti
{"title":"Data-driven Modeling and Predictive Control of Maximum Pressure Rise Rate in RCCI Engines","authors":"L. N. A. Basina, Behrouz K. Irdmousa, J. Mohammadpour, H. Borhan, J. Naber, M. Shahbakhti","doi":"10.1109/CCTA41146.2020.9206358","DOIUrl":null,"url":null,"abstract":"Reactivity controlled compression ignition (RCCI) is a promising low temperature combustion (LTC) regime that offers lower nitrogen oxides (NOx), soot and particulate matter (PM) emissions along with higher combustion efficiency compared to conventional diesel engines. It is critical to control maximum pressure rise rate (MPRR) in RCCI engines in order to safely and efficiently operate at varying engine loads. In this paper, a data-driven modeling (DDM) approach using support vector machines (SVM) is adapted to develop a linear parameter-varying (LPV) representation of MPRR for RCCI combustion. This LPV representation is then used in the design of a model predictive controller (MPC) to control crank angle of 50% of fuel mass fraction burn (CA50) and indicated mean effective pressure (IMEP) while limiting the MPRR. The results show that the LPV-MPC control strategy can track CA50 and IMEP with mean tracking errors of 0.9 CAD and 4.7 kPa, respectively, while limiting the MPRR to the maximum allowable value of 5.8 bar/CAD.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"108 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Reactivity controlled compression ignition (RCCI) is a promising low temperature combustion (LTC) regime that offers lower nitrogen oxides (NOx), soot and particulate matter (PM) emissions along with higher combustion efficiency compared to conventional diesel engines. It is critical to control maximum pressure rise rate (MPRR) in RCCI engines in order to safely and efficiently operate at varying engine loads. In this paper, a data-driven modeling (DDM) approach using support vector machines (SVM) is adapted to develop a linear parameter-varying (LPV) representation of MPRR for RCCI combustion. This LPV representation is then used in the design of a model predictive controller (MPC) to control crank angle of 50% of fuel mass fraction burn (CA50) and indicated mean effective pressure (IMEP) while limiting the MPRR. The results show that the LPV-MPC control strategy can track CA50 and IMEP with mean tracking errors of 0.9 CAD and 4.7 kPa, respectively, while limiting the MPRR to the maximum allowable value of 5.8 bar/CAD.
RCCI发动机最大升压速率数据驱动建模与预测控制
反应性控制压缩点火(RCCI)是一种很有前途的低温燃烧(LTC)方式,与传统柴油发动机相比,它提供更低的氮氧化物(NOx)、烟尘和颗粒物(PM)排放,同时具有更高的燃烧效率。控制RCCI发动机的最大压力上升速率(MPRR)是发动机在变负荷下安全高效运行的关键。本文采用数据驱动建模(DDM)方法,利用支持向量机(SVM)来建立RCCI燃烧过程中MPRR的线性参数变化(LPV)表示。然后将LPV表示用于模型预测控制器(MPC)的设计,以控制50%燃料质量分数燃烧(CA50)的曲柄角和指示的平均有效压力(IMEP),同时限制MPRR。结果表明,LPV-MPC控制策略可以跟踪CA50和IMEP,平均跟踪误差分别为0.9 CAD和4.7 kPa,同时将MPRR限制在最大允许值5.8 bar/CAD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信