MSN-net: Multi-Scale Normality Network for Video Anomaly Detection

Y. Liu, Di Li, Wei Zhu, Dingkang Yang, Jing Liu, Liang Song
{"title":"MSN-net: Multi-Scale Normality Network for Video Anomaly Detection","authors":"Y. Liu, Di Li, Wei Zhu, Dingkang Yang, Jing Liu, Liang Song","doi":"10.1109/ICASSP49357.2023.10097052","DOIUrl":null,"url":null,"abstract":"Existing unsupervised video anomaly detection methods often suffer from performance degradation due to the overgeneralization of deep models. In this paper, we propose a simple yet effective Multi-Scale Normality network (MSN-net) that uses hierarchical memories to learn multi-level prototypical spatial-temporal patterns of normal events. Specifically, the hierarchical memory module interacts with the encoder through the reading and writing operations during the training phase, preserving multi-scale normality in three separate memory pools. Then, the decoder decodes the features rewritten by the memorized normality to predict future frames so that its ability to predict anomalies is diminished. Experimental results show that MSN-net performs comparably to the state-of-the-art methods, and extension analysis demonstrates the effectiveness of multi-scale normality learning.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10097052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Existing unsupervised video anomaly detection methods often suffer from performance degradation due to the overgeneralization of deep models. In this paper, we propose a simple yet effective Multi-Scale Normality network (MSN-net) that uses hierarchical memories to learn multi-level prototypical spatial-temporal patterns of normal events. Specifically, the hierarchical memory module interacts with the encoder through the reading and writing operations during the training phase, preserving multi-scale normality in three separate memory pools. Then, the decoder decodes the features rewritten by the memorized normality to predict future frames so that its ability to predict anomalies is diminished. Experimental results show that MSN-net performs comparably to the state-of-the-art methods, and extension analysis demonstrates the effectiveness of multi-scale normality learning.
用于视频异常检测的多尺度正态网络
现有的无监督视频异常检测方法往往由于深度模型的过度泛化而导致性能下降。在本文中,我们提出了一个简单而有效的多尺度正态网络(MSN-net),它使用分层记忆来学习正常事件的多级原型时空模式。具体来说,分层存储模块在训练阶段通过读写操作与编码器交互,在三个独立的存储池中保持多尺度正态性。然后,解码器对记忆的正态性重写的特征进行解码,以预测未来的帧,从而降低其预测异常的能力。实验结果表明,MSN-net的性能与目前最先进的方法相当,可拓分析证明了多尺度正态性学习的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信