Head pose estimation of partially occluded faces

Markus T. Wenzel, W. Schiffmann
{"title":"Head pose estimation of partially occluded faces","authors":"Markus T. Wenzel, W. Schiffmann","doi":"10.1109/CRV.2005.45","DOIUrl":null,"url":null,"abstract":"This paper describes an algorithm, which calculates the approximate head pose of partially occluded faces without training or manual initialization. The presented approach works on low-resolution Webcam images. The algorithm is based on the observation that for small depth rotations of a head the rotation angles can be approximated linearly. It uses the CamShift (continuous adaptive mean shift) algorithm to track the users head. With a pyramidal implementation of an iterative Lucas-Kanade optical flow algorithm, a certain feature point in the face is tracked. Pan and tilt of the head are estimated from the shift, of the feature point relative to the center of the head. 3D position and roll are estimated from the CamShift, results.","PeriodicalId":307318,"journal":{"name":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","volume":"38 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd Canadian Conference on Computer and Robot Vision (CRV'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2005.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper describes an algorithm, which calculates the approximate head pose of partially occluded faces without training or manual initialization. The presented approach works on low-resolution Webcam images. The algorithm is based on the observation that for small depth rotations of a head the rotation angles can be approximated linearly. It uses the CamShift (continuous adaptive mean shift) algorithm to track the users head. With a pyramidal implementation of an iterative Lucas-Kanade optical flow algorithm, a certain feature point in the face is tracked. Pan and tilt of the head are estimated from the shift, of the feature point relative to the center of the head. 3D position and roll are estimated from the CamShift, results.
部分遮挡面部的头部姿态估计
本文描述了一种无需训练或人工初始化即可计算部分遮挡人脸的近似头姿的算法。所提出的方法适用于低分辨率的网络摄像头图像。该算法基于对头部小深度旋转的观察,旋转角度可以线性近似。它使用CamShift(连续自适应平均移位)算法来跟踪用户的头部。利用迭代Lucas-Kanade光流算法的金字塔形实现,对人脸的某一特征点进行跟踪。从特征点相对于头部中心的位移来估计头部的平移和倾斜。从CamShift的结果中估计三维位置和滚动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信