Spinal fracture lesions segmentation based on U-net

Gang Sha, Junsheng Wu, Bin Yu
{"title":"Spinal fracture lesions segmentation based on U-net","authors":"Gang Sha, Junsheng Wu, Bin Yu","doi":"10.1109/ICAICA50127.2020.9182574","DOIUrl":null,"url":null,"abstract":"Because of the problem that the complexity of spine CT images, the irregular shape of vertebral boundary, low contrast, noise and unevenness in images, meanwhile there are artificial deviations and low efficiencies in clinic, which needs doctors' prior knowledge and clinical experience to determine lesions location in CT images, so it can not meet the clinical real-time needs. In this paper, We use deep learning to process the CT images of spine, and to divide lesions of (cervical fracture, cfracture), (thoracic fracture, tfracture), (lumbar fracture, lfracture) by the improved U-net[1]. The experiment shows that we can effectively segment spinal fracture lesions by U-net, which can basically meet the clinical real-time needs.","PeriodicalId":113564,"journal":{"name":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","volume":"27 24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICA50127.2020.9182574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Because of the problem that the complexity of spine CT images, the irregular shape of vertebral boundary, low contrast, noise and unevenness in images, meanwhile there are artificial deviations and low efficiencies in clinic, which needs doctors' prior knowledge and clinical experience to determine lesions location in CT images, so it can not meet the clinical real-time needs. In this paper, We use deep learning to process the CT images of spine, and to divide lesions of (cervical fracture, cfracture), (thoracic fracture, tfracture), (lumbar fracture, lfracture) by the improved U-net[1]. The experiment shows that we can effectively segment spinal fracture lesions by U-net, which can basically meet the clinical real-time needs.
基于U-net的脊柱骨折病灶分割
由于脊柱CT图像的复杂性、椎体边界形状不规则、图像对比度低、噪声和不均匀等问题,同时在临床中存在人为偏差和低效率,需要医生的先验知识和临床经验来确定CT图像中的病变位置,因此不能满足临床实时性的需要。在本文中,我们使用深度学习对脊柱的CT图像进行处理,并通过改进的U-net对(颈椎骨折,c骨折)、(胸椎骨折,t骨折)、(腰椎骨折,l骨折)病变进行划分[1]。实验表明,利用U-net可以有效地分割脊柱骨折病变,基本满足临床实时性的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信