Hybrid combination of knowledge- and cepstral-based features for phoneme recognition

Rudolph van der Merwe, J. du Preez
{"title":"Hybrid combination of knowledge- and cepstral-based features for phoneme recognition","authors":"Rudolph van der Merwe, J. du Preez","doi":"10.1109/COMSIG.1998.736923","DOIUrl":null,"url":null,"abstract":"A new, general, mathematically sound technique is developed to integrate knowledge-based information with standard cepstral features into the formal HMM framework for phoneme recognition. By using these hybrid features, the maximum amount of information contained in the speech signal can be utilised. It is shown that a trivial extension of the statistical models used to model the cepstral features, cannot be used to model the hybrid feature vectors, as this results in a decrease in phoneme recognition accuracy. By using the proposed hybrid technique though, a statistically significant increase in phoneme recognition accuracy is achieved.","PeriodicalId":294473,"journal":{"name":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","volume":"26 21","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1998 South African Symposium on Communications and Signal Processing-COMSIG '98 (Cat. No. 98EX214)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSIG.1998.736923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new, general, mathematically sound technique is developed to integrate knowledge-based information with standard cepstral features into the formal HMM framework for phoneme recognition. By using these hybrid features, the maximum amount of information contained in the speech signal can be utilised. It is shown that a trivial extension of the statistical models used to model the cepstral features, cannot be used to model the hybrid feature vectors, as this results in a decrease in phoneme recognition accuracy. By using the proposed hybrid technique though, a statistically significant increase in phoneme recognition accuracy is achieved.
基于知识和倒谱特征的音素识别混合组合
开发了一种新的、通用的、数学上合理的技术,将基于知识的信息与标准倒谱特征集成到正式的HMM框架中,用于音素识别。通过使用这些混合特征,可以最大限度地利用语音信号中包含的信息量。结果表明,用于倒谱特征建模的统计模型的简单扩展不能用于混合特征向量的建模,因为这会导致音素识别精度的降低。通过使用所提出的混合技术,音素识别的准确率有了统计学上的显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信