Statistical Analysis of Location Parameter of Inverse Gaussian Distribution Under Noninformative Priors

Nida Khan, M. Aslam
{"title":"Statistical Analysis of Location Parameter of Inverse Gaussian Distribution Under Noninformative Priors","authors":"Nida Khan, M. Aslam","doi":"10.29145/2019/JQM/030204","DOIUrl":null,"url":null,"abstract":"Bayesian estimation for location parameter of the inverse Gaussian distribution is presented in this paper. Noninformative priors (Uniform and Jeffreys) are assumed to be the prior distributions for the location parameter as the shape parameter of the distribution is considered to be known. Four loss functions: Squared error, Trigonometric, Squared logarithmic and Linex are used for estimation. Bayes risks are obtained to find the best Bayes estimator through simulation study and real life data","PeriodicalId":212366,"journal":{"name":"Journal of Quantitative Methods","volume":"28 28","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29145/2019/JQM/030204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian estimation for location parameter of the inverse Gaussian distribution is presented in this paper. Noninformative priors (Uniform and Jeffreys) are assumed to be the prior distributions for the location parameter as the shape parameter of the distribution is considered to be known. Four loss functions: Squared error, Trigonometric, Squared logarithmic and Linex are used for estimation. Bayes risks are obtained to find the best Bayes estimator through simulation study and real life data
非信息先验条件下逆高斯分布位置参数的统计分析
提出了反高斯分布位置参数的贝叶斯估计方法。假设非信息先验(Uniform和Jeffreys)是位置参数的先验分布,因为分布的形状参数是已知的。四种损失函数:平方误差,三角函数,平方对数和Linex用于估计。通过仿真研究和实际数据得到贝叶斯风险,找到最佳贝叶斯估计量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信