Set Theory

Adel N. Boules
{"title":"Set Theory","authors":"Adel N. Boules","doi":"10.1093/oso/9780198868781.003.0002","DOIUrl":null,"url":null,"abstract":"The chapter is a concise, practical presentation of the basics of set theory. The topics include set equivalence, countability, partially ordered, linearly ordered, and well-ordered sets, the axiom of choice, and Zorn’s lemma, as well as cardinal numbers and cardinal arithmetic. The first two sections are essential for a proper understanding of the rest of the book. In particular, a thorough understanding of countability and Zorn’s lemma are indispensable. Parts of the section on cardinal numbers may be included, but only an intuitive understanding of cardinal numbers is sufficient to follow such topics as the discussion on the existence of a vector space of arbitrary (infinite) dimension, and the existence of inseparable Hilbert spaces. Cardinal arithmetic can be omitted since its applications later in the book are limited. Ordinal numbers have been carefully avoided.","PeriodicalId":182769,"journal":{"name":"Fundamentals of Mathematical Analysis","volume":"10 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentals of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198868781.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The chapter is a concise, practical presentation of the basics of set theory. The topics include set equivalence, countability, partially ordered, linearly ordered, and well-ordered sets, the axiom of choice, and Zorn’s lemma, as well as cardinal numbers and cardinal arithmetic. The first two sections are essential for a proper understanding of the rest of the book. In particular, a thorough understanding of countability and Zorn’s lemma are indispensable. Parts of the section on cardinal numbers may be included, but only an intuitive understanding of cardinal numbers is sufficient to follow such topics as the discussion on the existence of a vector space of arbitrary (infinite) dimension, and the existence of inseparable Hilbert spaces. Cardinal arithmetic can be omitted since its applications later in the book are limited. Ordinal numbers have been carefully avoided.
集理论
这一章是对集合论基础的简明而实用的介绍。主题包括集合等价性、可数性、部分有序、线性有序和良有序集合、选择公理、佐恩引理,以及基数和基数算术。前两部分对于正确理解本书的其余部分至关重要。特别是,对可数性和佐恩引理的透彻理解是必不可少的。关于基数的部分内容可以包括在内,但只有对基数的直观理解才足以继续讨论任意(无限)维向量空间的存在性和不可分割的希尔伯特空间的存在性等主题。基数算术可以省略,因为它在本书后面的应用是有限的。序数被小心地避免了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信