FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs

Qingcheng Xiao, Liqiang Lu, Jiaming Xie, Yun Liang
{"title":"FCNNLib: An Efficient and Flexible Convolution Algorithm Library on FPGAs","authors":"Qingcheng Xiao, Liqiang Lu, Jiaming Xie, Yun Liang","doi":"10.1109/DAC18072.2020.9218748","DOIUrl":null,"url":null,"abstract":"Convolutions can be implemented with different algorithms, which are diverse in arithmetic complexity, resource requirement, etc. Multiple algorithms can share the FPGA resources spatially as well as temporally, introducing either reconfiguration overhead or resource underutilization. In this paper, we propose an efficient library FCNNLib to coordinate multiple convolution algorithms on FPGAs. We develop three scheduling techniques: spatial, temporal, and hybrid, which exhibit different trade-offs in latency and throughput. We also expose a set of interfaces to arm the users. Experiments using modern CNNs demonstrate FCNNLib achieves up to 1.315X latency improvement compared with dedicated accelerators and 1.755X energy efficiency improvement compared with cuDNN.","PeriodicalId":428807,"journal":{"name":"2020 57th ACM/IEEE Design Automation Conference (DAC)","volume":"142 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 57th ACM/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DAC18072.2020.9218748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Convolutions can be implemented with different algorithms, which are diverse in arithmetic complexity, resource requirement, etc. Multiple algorithms can share the FPGA resources spatially as well as temporally, introducing either reconfiguration overhead or resource underutilization. In this paper, we propose an efficient library FCNNLib to coordinate multiple convolution algorithms on FPGAs. We develop three scheduling techniques: spatial, temporal, and hybrid, which exhibit different trade-offs in latency and throughput. We also expose a set of interfaces to arm the users. Experiments using modern CNNs demonstrate FCNNLib achieves up to 1.315X latency improvement compared with dedicated accelerators and 1.755X energy efficiency improvement compared with cuDNN.
FCNNLib: fpga上高效灵活的卷积算法库
卷积可以用不同的算法来实现,这些算法在算法复杂度、资源需求等方面是不同的。多种算法可以在空间和时间上共享FPGA资源,从而导致重新配置开销或资源利用率不足。在本文中,我们提出了一个高效的库FCNNLib来协调fpga上的多个卷积算法。我们开发了三种调度技术:空间调度、时间调度和混合调度,它们在延迟和吞吐量方面表现出不同的权衡。我们还公开了一组接口来武装用户。使用现代cnn的实验表明,与专用加速器相比,FCNNLib的延迟提高了1.315倍,与cuDNN相比,能效提高了1.755倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信