Energy-Aware Task Migration Through Ant-Colony Optimization for Multiprocessors

Dulana Rupanetti, Hassan A. Salamy
{"title":"Energy-Aware Task Migration Through Ant-Colony Optimization for Multiprocessors","authors":"Dulana Rupanetti, Hassan A. Salamy","doi":"10.1109/uemcon53757.2021.9666584","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel strategy to improve the power dissipation of the Multiprocessor System on Chips (MPSoC) through a modified Ant-Colony Optimization (ACO) for task migration. Combined with a First-Fit task allocation heuristic, the ACO algorithm tries to split tasks and migrate them to processors with low task utilization to minimize the overall power consumption of the MPSoC. Finally, the task set, including split tasks, is scheduled through an Early-Deadline-First (EDF) scheduler. This paper describes the implementation and verification of the proposed work, and the results of the experiment attest to the improvements gained over the traditional allocating and scheduling algorithms in the literature.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"5 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we introduce a novel strategy to improve the power dissipation of the Multiprocessor System on Chips (MPSoC) through a modified Ant-Colony Optimization (ACO) for task migration. Combined with a First-Fit task allocation heuristic, the ACO algorithm tries to split tasks and migrate them to processors with low task utilization to minimize the overall power consumption of the MPSoC. Finally, the task set, including split tasks, is scheduled through an Early-Deadline-First (EDF) scheduler. This paper describes the implementation and verification of the proposed work, and the results of the experiment attest to the improvements gained over the traditional allocating and scheduling algorithms in the literature.
基于蚁群优化的多处理器能量感知任务迁移
在这项工作中,我们介绍了一种新的策略,通过改进蚁群优化(ACO)的任务迁移来提高多处理器片上系统(MPSoC)的功耗。结合First-Fit任务分配启发式算法,蚁群算法尝试拆分任务并将其迁移到任务利用率较低的处理器上,以最大限度地降低MPSoC的总体功耗。最后,任务集(包括分割任务)通过Early-Deadline-First (EDF)调度器进行调度。本文描述了所提出的工作的实现和验证,实验结果证明了比文献中传统的分配和调度算法所获得的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信