Decision diagrams as plans: Answering observation-grounded queries

Dylan A. Shell, J. O’Kane
{"title":"Decision diagrams as plans: Answering observation-grounded queries","authors":"Dylan A. Shell, J. O’Kane","doi":"10.1109/ICRA48891.2023.10161530","DOIUrl":null,"url":null,"abstract":"We consider a robot that answers questions about its environment by traveling to appropriate places and then sensing. Questions are posed as structured queries and may involve conditional or contingent relationships between observable properties. After formulating this problem, and empha-sizing the advantages of exploiting deducible information, we describe how non-trivial knowledge of the world and queries can be given a convenient, concise, unified representation via reduced ordered binary decision diagrams (BDDs). To use these data structures directly for inference and planning, we introduce a new product operation, and generalize the classic dynamic variable reordering techniques to solve planning problems. Also, finally, we evaluate optimizations that exploit locality.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"91 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a robot that answers questions about its environment by traveling to appropriate places and then sensing. Questions are posed as structured queries and may involve conditional or contingent relationships between observable properties. After formulating this problem, and empha-sizing the advantages of exploiting deducible information, we describe how non-trivial knowledge of the world and queries can be given a convenient, concise, unified representation via reduced ordered binary decision diagrams (BDDs). To use these data structures directly for inference and planning, we introduce a new product operation, and generalize the classic dynamic variable reordering techniques to solve planning problems. Also, finally, we evaluate optimizations that exploit locality.
作为计划的决策图:回答基于观察的查询
我们考虑一个机器人,它通过移动到适当的地方,然后感知,来回答有关其环境的问题。问题作为结构化查询提出,可能涉及可观察属性之间的条件或偶然关系。在阐述了这个问题并强调了利用可演绎信息的优势之后,我们描述了如何通过简化有序二进制决策图(bdd)将世界和查询的非平凡知识给出方便、简洁、统一的表示。为了直接使用这些数据结构进行推理和规划,我们引入了一种新的乘积运算,并推广了经典的动态变量重排序技术来解决规划问题。最后,我们还评估了利用局部性的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信