The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation

Nikolay Bogoychev, Pinzhen Chen
{"title":"The Highs and Lows of Simple Lexical Domain Adaptation Approaches for Neural Machine Translation","authors":"Nikolay Bogoychev, Pinzhen Chen","doi":"10.18653/v1/2021.insights-1.12","DOIUrl":null,"url":null,"abstract":"Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis reranking based on similarity. The methods are computationally cheap and show success on low-resource out-of-domain test sets. However, the methods lose advantage when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of unseen words.","PeriodicalId":166055,"journal":{"name":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second Workshop on Insights from Negative Results in NLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.insights-1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Machine translation systems are vulnerable to domain mismatch, especially in a low-resource scenario. Out-of-domain translations are often of poor quality and prone to hallucinations, due to exposure bias and the decoder acting as a language model. We adopt two approaches to alleviate this problem: lexical shortlisting restricted by IBM statistical alignments, and hypothesis reranking based on similarity. The methods are computationally cheap and show success on low-resource out-of-domain test sets. However, the methods lose advantage when there is sufficient data or too great domain mismatch. This is due to both the IBM model losing its advantage over the implicitly learned neural alignment, and issues with subword segmentation of unseen words.
神经机器翻译中简单词汇域自适应方法的优缺点
机器翻译系统容易受到域不匹配的影响,特别是在资源匮乏的情况下。由于暴露偏见和解码器充当语言模型,域外翻译通常质量差,容易产生幻觉。我们采用两种方法来缓解这个问题:受IBM统计校准限制的词汇短名单,以及基于相似性的假设重新排序。这些方法计算成本低,并且在低资源的域外测试集上取得了成功。然而,当数据充足或域不匹配过大时,该方法就失去了优势。这是由于IBM模型失去了其相对于隐式学习的神经对齐的优势,以及未见单词的子词分割问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信