Human Action Recognition by Radon Transform

Yan Chen, Qiang Wu, Xiangjian He
{"title":"Human Action Recognition by Radon Transform","authors":"Yan Chen, Qiang Wu, Xiangjian He","doi":"10.1109/ICDMW.2008.26","DOIUrl":null,"url":null,"abstract":"A new feature description is used for human behaviour representation and recognition. The feature is based on Radon transforms of extracted silhouettes. Key postures are selected based on the Radon transform. Key postures are combined to construct an action template for each sequence. Linear discriminant analysis (LDA) is applied to the set of key postures to obtain low dimensional feature vectors. Different classification methods are used to classify each sequence. Experiments are carried out based on a publically available human behaviour database and the results are exciting.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"58 19","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

A new feature description is used for human behaviour representation and recognition. The feature is based on Radon transforms of extracted silhouettes. Key postures are selected based on the Radon transform. Key postures are combined to construct an action template for each sequence. Linear discriminant analysis (LDA) is applied to the set of key postures to obtain low dimensional feature vectors. Different classification methods are used to classify each sequence. Experiments are carried out based on a publically available human behaviour database and the results are exciting.
Radon变换的人体动作识别
一种新的特征描述用于人类行为的表示和识别。该特征基于提取轮廓的Radon变换。基于Radon变换选择关键姿态。将关键姿势组合起来,为每个序列构建一个动作模板。将线性判别分析(LDA)应用于关键姿态集,得到低维特征向量。每个序列使用不同的分类方法进行分类。实验是基于一个公开的人类行为数据库进行的,结果令人兴奋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信