Note on probabilistic algorithms in integer and polynomial arithmetic

M. Kaminski
{"title":"Note on probabilistic algorithms in integer and polynomial arithmetic","authors":"M. Kaminski","doi":"10.1145/800206.806380","DOIUrl":null,"url":null,"abstract":"For many computational problems it is not known whether verification of a result can be done faster than its computation. For instance, it is unknown whether the verification of the validity of the integer equality x*y&equil;z needs fewer bit operations than a computation of the product x*y. It is sometimes much easier, however, to speed up the computation probabilistically if just the verification of the result is involved.\n In this paper we present linear probabilistic algorithms for verification of the validity of the integer equality f<subscrpt>1</subscrpt>(x<subscrpt>1</subscrpt>,...,x<subscrpt>N</subscrpt>)&equil;f<subscrpt>2</subscrpt>(x<subscrpt>1</subscrpt>,...,x<subscrpt>N</subscrpt>) for rational functions f<subscrpt>1</subscrpt> and f<subscrpt>2</subscrpt>, which can be of the form of a rational combination of rational functions.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800206.806380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For many computational problems it is not known whether verification of a result can be done faster than its computation. For instance, it is unknown whether the verification of the validity of the integer equality x*y&equil;z needs fewer bit operations than a computation of the product x*y. It is sometimes much easier, however, to speed up the computation probabilistically if just the verification of the result is involved. In this paper we present linear probabilistic algorithms for verification of the validity of the integer equality f1(x1,...,xN)&equil;f2(x1,...,xN) for rational functions f1 and f2, which can be of the form of a rational combination of rational functions.
整数和多项式算法中的概率算法
对于许多计算问题,不知道结果的验证是否能比计算快。例如,验证整数等式x*y& equal;z的有效性是否需要比计算乘积x*y更少的位操作是未知的。然而,如果只涉及结果的验证,有时从概率上加快计算速度要容易得多。本文给出了整数等式f1(x1,…,xN)和equequal;f2(x1,…,xN)对于有理函数f1和f2的有效性的线性概率验证算法,其形式可以是有理函数的有理组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信