Density-based community detection in social networks

K. Subramani, Alexander Velkov, I. Ntoutsi, Peer Krőger, H. Kriegel
{"title":"Density-based community detection in social networks","authors":"K. Subramani, Alexander Velkov, I. Ntoutsi, Peer Krőger, H. Kriegel","doi":"10.1109/IMSAA.2011.6156357","DOIUrl":null,"url":null,"abstract":"This paper deals with community detection in social networks using density-based clustering. We compare two well-known concepts for community detection that are implemented as distance functions in the algorithms SCAN [1] and DEN-GRAPH [2], the structural similarity of nodes and the number of interactions between nodes, respectively, in order to evaluate advantages and limitations of these approaches. Additionally, we propose to use a hierarchical approach for clustering in order to get rid of the problem of choosing an appropriate density threshold for community detection, a severe limitation of the applicability and usefulness of the SCAN and DENGRAPH algorithms in real life applications. We conduct all experiments on data sets with different characteristics, particularly Twitter data and Enron data.","PeriodicalId":445751,"journal":{"name":"2011 IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Conference on Internet Multimedia Systems Architecture and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSAA.2011.6156357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper deals with community detection in social networks using density-based clustering. We compare two well-known concepts for community detection that are implemented as distance functions in the algorithms SCAN [1] and DEN-GRAPH [2], the structural similarity of nodes and the number of interactions between nodes, respectively, in order to evaluate advantages and limitations of these approaches. Additionally, we propose to use a hierarchical approach for clustering in order to get rid of the problem of choosing an appropriate density threshold for community detection, a severe limitation of the applicability and usefulness of the SCAN and DENGRAPH algorithms in real life applications. We conduct all experiments on data sets with different characteristics, particularly Twitter data and Enron data.
社交网络中基于密度的社区检测
本文使用基于密度的聚类方法研究社交网络中的社区检测。我们比较了在SCAN[1]和DEN-GRAPH[2]算法中作为距离函数实现的两个众所周知的社区检测概念,分别是节点的结构相似性和节点之间的交互次数,以评估这些方法的优点和局限性。此外,我们建议使用分层方法进行聚类,以摆脱为社区检测选择合适的密度阈值的问题,这是SCAN和DENGRAPH算法在现实应用中的适用性和有用性的严重限制。我们对具有不同特征的数据集进行所有实验,特别是Twitter数据和Enron数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信